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Production editor: Keri Hales
Copy editor: Alisa Larson
Proofreader: Jason Everett

Technical proofreader: Karsten Strøbæk
Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781617298684
Printed in the United States of America

www.manning.com


brief contents
PART 1 ................................................................................... 1

1 ■ Welcome to the Kafka event streaming platform 3

2 ■ Kafka brokers 18

PART 2  .................................................................................43

3 ■ Schema Registry 45

4 ■ Kafka clients 88

5 ■ Kafka Connect 132

PART 3  ...............................................................................157

6 ■ Developing Kafka Streams 159

7 ■ Streams and state 188

8 ■ The KTable API 226

9 ■ Windowing and timestamps 257

10 ■ The Processor API 299

11 ■ ksqlDB 321
v



BRIEF CONTENTSvi
12 ■ Spring Kafka 352

13 ■ Kafka Streams Interactive Queries 374

14 ■ Testing 389



contents
foreword xiii
preface xv
acknowledgments xvii
about this book xix
about the author xxiii
about the cover illustration xxiv

PART 1  ........................................................................ 1

1 Welcome to the Kafka event streaming platform 3
1.1 Event streaming 3
1.2 What is an event? 6
1.3 An event stream example 7
1.4 Introducing the Apache Kafka event streaming 

platform 8
Kafka brokers 9 ■ Schema Registry 10 ■ Producer and 
consumer clients 11 ■ Kafka Connect 12 ■ Kafka Streams 12
ksqlDB 12

1.5 A concrete example of applying the Kafka event streaming 
platform 13
vii



CONTENTSviii
2 Kafka brokers 18
2.1 Introducing Kafka brokers 19
2.2 Produce requests 19
2.3 Fetch requests 20
2.4 Topics and partitions 21

Offsets 23 ■ Determining the correct number of partitions 25

2.5 Sending your first messages 25
Creating a topic 26 ■ Producing records on the command line 26
Consuming records from the command line 27 ■ Partitions in 
action 28

2.6 Segments 29
Data retention 30 ■ Compacted topics 31 ■ Topic partition 
directory contents 32

2.7 Tiered storage 34
2.8 Cluster metadata 36
2.9 Leaders and followers 37

Replication 37

2.10 Checking for a healthy broker 41
Request handler idle percentage 42 ■ Network handler idle 
percentage 42 ■ Underreplicated partitions 42

PART 2 ...................................................................... 43

3 Schema Registry 45
3.1 Objects 46
3.2 What is a schema, and why do you need one? 47

What is Schema Registry? 48 ■ Getting Schema Registry 50
Architecture 50 ■ Communication: Using Schema Registry’s REST 
API 52 ■ Registering a schema 52 ■ Plugins and serialization 
platform tools 57 ■ Uploading a schema file 58 ■ Generating 
code from schemas 59 ■ End-to-end example 60

3.3 Subject name strategies 65
TopicNameStrategy 66 ■ RecordNameStrategy 67
TopicRecordNameStrategy 68

3.4 Schema compatibility 71
Backward compatibility 71 ■ Forward compatibility 72
Full compatibility 72 ■ No compatibility 73



CONTENTS ix
3.5 Schema references 74
3.6 Schema references and multiple events per topic 78
3.7 Schema Registry (de)serializers 81

Avroserializers and deserializers 82 ■ Protobuf 83
JSON Schema 84

3.8 Serialization without Schema Registry 85

4 Kafka clients 88
4.1 Introducing Kafka clients 88
4.2 Producing records with the KafkaProducer 90

Producer configurations 93 ■ Kafka delivery semantics 94
Partition assignment 95 ■ Writing a custom partitioner 96
Specifying a custom partitioner 98 ■ Timestamps 98

4.3 Consuming records with the KafkaConsumer 98
The poll interval 101 ■ The group id configuration 102
Applying partition assignment strategies 107 ■ Static 
membership 108 ■ Committing offsets 110

4.4 Exactly-once delivery in Kafka 116
The idempotent producer 116 ■ Transactional producer 118
Consumers in transactions 121 ■ Producers and consumers 
within a transaction 122

4.5 Using the Admin API for programmatic topic 
management 124

4.6 Handling multiple event types in a single topic 125
Producing multiple event types 126 ■ Consuming multiple 
event types 127

5 Kafka Connect 132
5.1 An introduction to Kafka Connect 133
5.2 Integrating external applications into Kafka 134
5.3 Getting started with Kafka Connect 135
5.4 Applying Single Message Transforms 141
5.5 Adding a sink connector 143
5.6 Building and deploying your own connector 146

Implementing a connector 146 ■ Making your connector 
dynamic with a monitoring thread 150 ■ Creating a custom 
transformation 152



CONTENTSx
PART 3 ....................................................................  157

6 Developing Kafka Streams 159

6.1 A look at Kafka Streams 159
6.2 Kafka Streams DSL 160
6.3 Hello World for Kafka Streams 160

Creating the topology for the Yelling app 161 ■ Kafka Streams 
configuration 166 ■ Serde creation 167

6.4 Masking credit card numbers and tracking purchase 
rewards in a retail sales setting 168
Building the source node and the masking processor 169
Adding the purchase-patterns processor 171 ■ Building the 
rewards processor 173 ■ Using Serdes to encapsulate serializers 
and deserializers in Kafka Streams 174 ■ Kafka Streams and 
Schema Registry 175

6.5 Interactive development 176
6.6 Choosing which events to process 178

Filtering purchases 178 ■ Splitting/branching the stream 179
Naming topology nodes 183 ■ Dynamic routing of messages 185

7 Streams and state 188

7.1 Stateful vs. stateless 189
7.2 Adding stateful operations to Kafka Streams 190

Group-by details 191 ■ Aggregation vs. reducing 193
Repartitioning the data 196 ■ Proactive repartitioning 201
Repartitioning to increase the number of tasks 204 ■ Using Kafka 
Streams optimizations 204

7.3 Stream-stream joins 206
Implementing a stream-stream join 207 ■ Join internals 208
ValueJoiner 210 ■ JoinWindows 211 ■ Co-partitioning 212
StreamJoined 213 ■ Other join options 213 ■ Outer joins 213
Left-outer join 213

7.4 State stores in Kafka Streams 215
Changelog topics restoring state stores 216 ■ Standby tasks 217
Assigning state stores in Kafka Streams 218 ■ State stores’ location 
on the filesystem 219 ■ Naming stateful operations 220
Specifying a store type 223 ■ Configuring changelog topics 224



CONTENTS xi
8 The KTable API 226
8.1 KTable: The update stream 227

Updates to records or the changelog 229 ■ KStream and KTable 
API in action 230

8.2 KTables are stateful 232
8.3 The KTable API 233
8.4 KTable aggregations 233
8.5 GlobalKTable 239
8.6 Table joins 241

Stream–table join details 243 ■ Versioned KTables 245
Stream–global table join details 246 ■ Table–table join details 250

9 Windowing and timestamps 257
9.1 Understanding the role of windows and the different 

types 260
Hopping windows 262 ■ Tumbling windows 266 ■ Session 
windows 268 ■ Sliding windows 271 ■ Window time 
alignment 275 ■ Retrieving window results for analysis 277

9.2 Handling out order data with grace—literally 282
9.3 Final windowed results 285

Strict buffering 290 ■ Eager buffering 291

9.4 Timestamps in Kafka Streams 292
9.5 The TimestampExtractor 294

WallclockTimestampExtractorSystem .currentTimeMillis() 
method 295 ■ Custom TimestampExtractor 295
Specifying a TimestampExtractor 296

9.6 Stream time 296

10 The Processor API 299
10.1 Working with sources, processors, and sinks to create 

a topology 300
Adding a source node 301 ■ Adding a processor node 302
Adding a sink node 305

10.2 Digging deeper into the Processor API with a stock 
analysis processor 307
The stock-performance processor application 308 ■ Punctuation 
semantics 310 ■ The process() method 312 ■ The punctuator 
execution 314



CONTENTSxii
10.3 Data-driven aggregation 315
10.4 Integrating the Processor API and the Kafka 

Streams API 319

11 ksqlDB 321
11.1 Understanding ksqlDB 322
11.2 More about streaming queries 325
11.3 Persistent vs. push vs. pull queries 333
11.4 Creating Streams and Tables 338
11.5 Schema Registry integration 341
11.6 ksqlDB advanced features 345

12 Spring Kafka 352
12.1 Introducing Spring 352
12.2 Using Spring to build Kafka-enabled applications 355

Spring Kafka application components 358 ■ Enhanced 
application requirements 362

12.3 Spring Kafka Streams 367

13 Kafka Streams Interactive Queries 374
13.1 Kafka Streams and information sharing 375
13.2 Learning about Interactive Queries 376

Building an Interactive Queries app with Spring Boot 379

14 Testing 389
14.1 Understanding the difference between unit and 

integration testing 390
Testing Kafka producers and consumers 391 ■ Creating tests 
for Kafka Streams operators 395 ■ Writing tests for a Kafka 
Streams topology 398 ■ Testing more complex Kafka Streams 
applications 401 ■ Developing effective integration tests 405

appendix A Schema compatibility workshop 412
appendix B Confluent resources 422
appendix C Working with Avro, Protobuf, and JSON Schema 424
appendix D Understanding Kafka Streams architecture 446

index 463



foreword
When a business event occurs, traditional data-at-rest systems record it but leave the
use of the data to a much later time. In contrast, Apache Kafka is a data streaming
platform designed to react to business events in real time. Over the past decade,
Apache Kafka has become the standard for data streaming. Hundreds of thousands of
organizations, including most of the largest enterprises in the world, are using Kafka
to take action on what’s happening to their business. Those actions allow them to
enhance customer experience, gain new business insights, improve efficiency, reduce
risks, and so on, all within a few short seconds.

 Applications built on top of Kafka are event driven. They typically take one or
more data streams as the input and continuously transform these data into a new
stream. The transformation often includes streaming operations such as filtering, pro-
jection, joining, and aggregation. Expressing those operations in low-level Java code is
inefficient and error prone. Kafka Streams provides a handful of high-level abstrac-
tions for developers to express those common streaming operations concisely and is a
very powerful tool for building event-driven applications in Java. 

 Bill has been a long-time contributor to Kafka and is an expert in Kafka Streams.
What’s unique about Bill is that not only does he understand the technology behind
Kafka Streams, but he also knows how to use Kafka Streams to solve real problems.
In this book, you will hear the key concepts in Kafka Streams directly from Bill. You
will also see many hands-on examples of how to build end-to-end event-driven appli-
cations using Kafka Streams, together with other Kafka APIs and Schema Registry. If
xiii



FOREWORDxiv
you are a developer wanting to learn how to build the next-gen event-driven applica-
tions on Kafka, you’ll find this book invaluable. Enjoy the book and the power of
data streaming!

—Jun Rao, co-founder, Confluent and Apache Kafka



preface
After completing the first edition of Kafka Streams in Action, I thought I had accom-
plished everything I set out to do. But as time went on, my understanding of the Kafka
ecosystem and my appreciation for Kafka Streams grew. I saw that Kafka Streams was
more powerful than I had initially thought. Additionally, I noticed other important
pieces in building event-streaming applications; Kafka Streams is still a key player but
not the only requirement. I realized that Apache Kafka could be considered the cen-
tral nervous system for an organization’s data. If Kafka is the central nervous system,
then Kafka Streams is a vital organ performing some necessary operations.

 But Kafka Streams relies on other components to bring events into Kafka or export
them to the outside world where its results and calculations can be put to good use.
I’m talking about the producer and consumer clients and Kafka Connect. As I put the
pieces together, I realized you need these other components to complete the event-
streaming picture. Couple all this with some significant improvements to Kafka
Streams since 2018, and I knew I wanted to write a second edition.

 But I didn’t just want to add cosmetic touches to the previous edition; I wanted to
express my improved understanding and add complete coverage of the entire Kafka
ecosystem. This meant expanding the scope of some subjects from sections of chap-
ters to whole chapters (like the producer and consumer clients), or adding entirely
new chapters (such as the new chapters on Connect and Schema Registry). For the
existing Kafka Streams chapters, writing a second edition meant updating and improv-
ing the existing material to clarify and communicate my deeper understanding.
xv



PREFACExvi
 Taking on the second edition with this new focus during the Covid-19 pandemic
wasn’t easy, and not without some serious personal challenges along the way. But in
the end, it was worth every minute of revision, and if I went back in time, I’d make the
same decision. 

 I hope that new readers of Kafka Streams in Action will find the book an essential
resource and that readers from the first edition will enjoy and apply the improve-
ments as well.
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about this book
I wrote the second edition of Kafka Streams in Action to teach you how to build event
streaming applications in Kafka Streams and include other components of the Kafka
ecosystem, Producer and Consumer clients, Connect, and Schema Registry. I took this
approach because for your event-streaming application to be as effective as possible,
you’ll need not just Kafka Streams but other essential tools. My approach to writing
this book is a pair-programming perspective; I imagine myself sitting next to you as
you write the code and learn the API. You’ll learn about the Kafka broker and how the
producer and consumer clients work. Then, you’ll see how to manage schemas, their
role with Schema Registry, and how Kafka Connect bridges external components and
Kafka. From there, you’ll dive into Kafka Streams, first building a simple application,
then adding more complexity as you dig deeper into Kafka Streams API. You’ll also
learn about ksqlDB, testing, and, finally, integrating Kafka with the popular Spring
framework.

Who should read this book
Kafka Streams in Action is for any developer wishing to get into stream processing.
While not strictly required, knowledge of distributed programming will help under-
stand Kafka and Kafka Streams. Knowledge of Kafka is beneficial but not required; I’ll
teach you what you need to know. Experienced Kafka developers and those new to
Kafka will learn how to develop compelling stream-processing applications with Kafka
Streams. Intermediate-to-advanced Java developers familiar with topics like serializa-
tion will learn how to use their skills to build a Kafka Streams application. The book’s
xix



ABOUT THIS BOOKxx
source code is written in Java 17 and extensively uses Java lambda syntax, so experi-
ence with lambdas (even from another language) will be helpful.

How this book is organized: A road map
This book has three parts spread over 14 chapters. While the book’s title is “Kafka
Streams in Action,” it covers the entire Kafka event-streaming platform. As a result,
the first five chapters cover the different components: Kafka brokers, consumer and
producer clients, Schema Registry, and Kafka Connect. This approach makes sense,
especially considering that Kafka Streams is an abstraction over the consumer and
producer clients. So, if you’re already familiar with Kafka, Connect, and Schema Reg-
istry or if you’re excited to get going with Kafka Streams, then by all means, skip
directly to Part 3.

 Part 1 introduces event streaming and describes the different parts of the Kafka
ecosystem to show you the big-picture view of how it all works and fits together. These
chapters also provide the basics of the Kafka broker for those who need them or want
a review:

 Chapter 1 provides some context on what an event and event-streaming are and
why they are vital for working with real-time data. It also presents the mental
model of the different components we’ll cover: the broker, clients, Kafka Con-
nect, Schema Registry, and, of course, Kafka Streams. I don’t go over any code
but describe how they all work.

 Chapter 2 is a primer for developers who are new to Kafka, and it covers the
role of the broker, topics, partitions, and some monitoring. Those with more
experience with Kafka can skip this chapter.

Part 2 moves on and covers getting data into and out of Kafka and managing schemas:

 Chapter 3 covers using Schema Registry to help you manage the evolution of
your data’s schemas. Spoiler alert: you’re always using a schema—if not explic-
itly, it’s implicitly there.

 Chapter 4 discusses the Kafka producer and consumer clients. The clients are
how you get data into and out of Kafka and provide the building blocks for
Kafka Connect and Kafka Streams.

 Chapter 5 is about Kafka Connect. Kafka Connect provides the ability to get
data into Kafka via source connectors and export it to external systems with sink
connectors.

Part 3 gets to the book’s heart and covers developing Kafka Streams applications. In
this section, you’ll also learn about ksqlDB and testing your event-streaming applica-
tion, and it concludes with integrating Kafka with the Spring Framework:

 Chapter 6 is your introduction to Kafka Streams, where you’ll build a Hello
World application and, from there, build a more realistic application for a fic-
tional retailer. Along the way, you’ll learn about the Kafka Streams DSL.
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 Chapter 7 continues your Kafka Streams learning path, where we discuss appli-
cation state and why it’s required for streaming applications. In this chapter,
some of the things you’ll learn about are aggregating data and joins.

 Chapter 8 teaches you about the KTable API. Whereas a KStream is a stream of
events, a KTable is a stream of related events or an update stream.

 Chapter 9 covers windowed operations and timestamps. Windowing an aggrega-
tion allows you to bucket results by time, and the timestamps on the records
drive the action.

 Chapter 10 dives into the Kafka Streams Processor API. Up to this point, you’ve
been working with the high-level DSL, but here, you’ll learn how to use the Pro-
cessor API when you need more control.

 Chapter 11 takes you further into the development stack, where you’ll learn
about ksqlDB. ksqlDB allows you to write event-streaming applications without
any code but using SQL.

 Chapter 12 discusses using the Spring Framework with Kafka clients and Kafka
Streams. Spring allows you to write more modular and testable code by provid-
ing a dependency injection framework for wiring up your applications.

 Chapter 13 introduces you to Kafka Streams Interactive Queries or IQ. IQ is the
ability to directly query the state store of a state operation in Kafka Streams.
You’ll use what you learned in Chapter 12 to build a Spring-enabled IQ web
application.

 Chapter 14 covers the all-important topic of testing. You’ll learn how to test cli-
ent applications with a Kafka Streams topology, the difference between unit
testing and integration testing, and when to apply them.

Finally, there are four appendices for further explanations:

 Appendix A contains a workshop on Schema Registry to get hands-on experi-
ence with the different schema compatibility modes.

 Appendix B presents information on using Confluent Cloud to help develop
your event streaming applications.

 Appendix C is a survey of working with the different schema types Avro, Proto-
buf, and JSON Schema.

 Appendix D covers the architecture and internals of Kafka Streams.

About the code
This book contains many examples of source code both in numbered listings and inline
with normal text. In both cases, source code is formatted in a fixed-width font like
this to separate it from ordinary text.

 In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In rare cases, even this was not enough, and listings include line-continuation-
markers (➥).
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 Additionally, comments in the source code have often been removed from the list-
ings when the code is described in the text. Code annotations accompany many of the
listings, highlighting important concepts.

 Finally, it’s important to note that many of the code examples aren’t meant to
stand on their own: they’re excerpts containing only the most relevant parts of what’s
currently under discussion. You’ll find all the examples from the book in the accom-
panying source code in their complete form.

 Source code for the book’s examples is available from GitHub at https://
github.com/bbejeck/KafkaStreamsInAction2ndEdition and the publisher’s website at
www.manning.com/books/kafka-streams-in-action-second-edition. The source code for
the book is an all-encompassing project using the build tool Gradle (https://gradle.org).
You can import the project into either IntelliJ or Eclipse using the appropriate com-
mands. Full instructions for using and navigating the source code can be found in the
accompanying README.md file.

liveBook discussion forum
Purchase of Kafka Streams in Action, Second Edition, includes free access to liveBook,
Manning’s online reading platform. Using liveBook’s exclusive discussion features,
you can attach comments to the book globally or to specific sections or paragraphs.
It’s a snap to make notes for yourself, ask and answer technical questions, and receive
help from the author and other users. To access the forum, go to https://livebook
.manning.com/book/kafka-streams-in-action-second-edition/discussion. You can also
learn more about Manning’s forums and the rules of conduct at https://livebook
.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.

Other online resources
 Apache Kafka documentation: https://kafka.apache.org
 Confluent documentation: https://docs.confluent.io/current
 Kafka Streams documentation: https://kafka.apache.org/documentation/streams/
 ksqlDB documentation: https://ksqldb.io/
 Spring Framework: https://spring.io/
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Part 1

In part 1, you’ll learn about events and event streaming in general. Event
streaming is a software development approach that considers events as an appli-
cation’s primary input and output. But to develop an effective event streaming
application, you’ll first need to learn what an event is (spoiler alert: it’s every-
thing!). Then you’ll read about what use cases are good candidates for event-
streaming applications and which are not.

 First, you’ll discover what a Kafka broker is, how it’s at the heart of the Kafka
ecosystem, and the various jobs it performs. Then you’ll learn what Schema Reg-
istry, producer and consumer clients, Connect, and Kafka Streams are and their
different roles. You‘ll also learn about the Apache Kafka event streaming plat-
form. Although this book focuses on Kafka Streams, it’s part of a larger whole
that allows you to develop event-streaming applications. If this first part leaves
you with more questions than answers, don’t fret; I’ll explain them all in subse-
quent chapters.





Welcome to the Kafka
event streaming platform
While the constant influx of data creates more entertainment and opportunities
for the consumer, increasingly, the users of this information are software systems
using other software systems. Think, for example, of the fundamental interaction
of watching a movie from your favorite movie streaming application. You log into
the application, search for and select a film, and then watch it, and afterward, you
may provide a rating or some indication of how you enjoyed the movie. Just this
simple interaction generates several events captured by the movie streaming ser-
vice. But this information needs analysis if it’s to be of use to the business. That’s
where all the other software comes into play.

1.1 Event streaming
Software systems consume and store all the information obtained from your inter-
action and the interactions of other subscribers. Then, additional software systems
use that information to make recommendations to you and to provide the streaming
service with insight on what programming to provide in the future. Now, consider

This chapter covers 
 Defining event streaming and events

 Introducing the Kafka event streaming platform

 Applying the platform to a concrete example
3



4 CHAPTER 1 Welcome to the Kafka event streaming platform
that this process occurs hundreds of thousands or even millions of times per day, and
you can see the massive amount of information that businesses need to harness and
that their software needs to make sense of to meet customer demands and expecta-
tions and stay competitive. 

 Another way to think of this process is that everything modern-day consumers do,
from streaming a movie online to purchasing a pair of shoes at a brick-and-mortar
store, generates an event. For an organization to survive and excel in our digital econ-
omy, it must have an efficient way of capturing and acting on these events. In other
words, businesses must find ways to keep up with the demand of this endless flow of
events if they want to satisfy customers and maintain a robust bottom line. Developers
call this constant flow an event stream. And, increasingly, they are meeting the demands
of this endless digital activity with an event-streaming platform, which utilizes a series of
event-streaming applications.

 An event-streaming platform is analogous to our central nervous system, which
processes millions of events (nerve signals) and, in response, sends out messages to
the appropriate parts of the body. Our conscious thoughts and actions generate some
of these responses. When we are hungry and open the refrigerator, the central ner-
vous system gets the message and sends out another one, telling the arm to reach for a
nice red apple on the first shelf. Other actions, such as your heart rate increasing in
anticipation of exciting news, are handled unconsciously.

 An event-streaming platform captures events generated from mobile devices, cus-
tomer interaction with websites, online activity, shipment tracking, and other business
transactions. But the platform, like the nervous system, does more than capture events.
It also needs a mechanism to reliably transfer and store the information from those
events in the order in which they occurred. Then, other applications can process or
analyze the events to extract different bits of that information.

 Processing the event stream in real time is essential for making time-sensitive deci-
sions. For example, does this purchase from customer X seem suspicious? Are the
signals from this temperature sensor indicating something has gone wrong in a manu-
facturing process? Has the routing information been sent to the appropriate depart-
ment of a business?

 But the value of an event-streaming platform goes beyond gaining immediate
information. Providing durable storage allows us to go back and look at event-stream
data in its raw form, perform some manipulation of the data for more insight, or
replay a sequence of events to try to understand what led to a particular outcome. For
example, an e-commerce site offers a fantastic deal on several products on the week-
end after a big holiday. The response to the sale is so strong that it crashes a few serv-
ers and brings the business down for a few minutes. By replaying all customer events,
engineers can better understand what caused the breakdown and how to fix the sys-
tem so it can handle a large, sudden influx of activity.

 So, where do you need event-streaming applications? Since everything in life can
be considered an event, any problem domain will benefit from processing event
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streams. But there are some areas where it’s more important to do so. Here are some
typical examples:

 Credit card fraud—A credit card owner may be unaware of unauthorized use. By
reviewing purchases as they happen against established patterns (location, gen-
eral spending habits), you may be able to detect a stolen credit card and alert
the owner.

 Intrusion detection—The ability to monitor aberrant behavior in real time is criti-
cal for the protection of sensitive data and the well-being of an organization.

 The Internet of Things—With IoT, sensors are located in all kinds of places and
send back data frequently. The ability to quickly capture and process this data
meaningfully is essential; anything less diminishes the effect of deploying these
sensors.

 The financial industry—The ability to track market prices and direction in real
time is essential for brokers and consumers to make effective decisions about
when to sell or buy.

 Sharing data in real-time—Large organizations, like corporations or conglomer-
ates, that have many applications need to share data in a standard, accurate,
and real-time way.

Bottom line: if the event stream provides essential and actionable information, busi-
nesses and organizations need event-driven applications to capitalize on the informa-
tion provided.

 But streaming applications are only a fit for some situations. Event-streaming appli-
cations become necessary when you have data in different places or a large volume of
events requiring distributed data stores. So, if you can manage with a single database
instance, streaming is unnecessary. For example, a small e-commerce business or a
local government website with primarily static data aren’t good candidates for build-
ing an event-streaming solution.

 In this book, you’ll learn about event-stream development, when and why it’s
essential, and how to use the Kafka event-streaming platform to build robust and
responsive applications. You’ll learn how to use the Kafka streaming platform’s various
components to capture events and make them available for other applications. We’ll
cover using the platform’s components for simple actions such as writing (producing)
or reading (consuming) events to advanced stateful applications requiring complex
transformations so you can solve the appropriate business challenges with an event-
streaming approach. This book is suitable for any developer looking to get into build-
ing event-streaming applications.

 Although the title, Kafka Streams in Action, focuses on Kafka Streams, this book
teaches the entire Kafka event-streaming platform, end to end. That platform includes
crucial components, such as producers, consumers, and schemas, that you must work
with before building your streaming apps, which you’ll learn in part 1. As a result, we
won’t get into the subject of Kafka Streams itself until later in the book, in chapter 6.
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But the enhanced coverage is worth it. Kafka Streams is an abstraction built on top of
components of the Kafka event streaming platform, so understanding these compo-
nents gives you a better grasp of how you can use Kafka Streams. 

1.2 What is an event?
So we’ve defined an event stream, but what is an event? We’ll define an event simply
as “something that happens” (https://www.merriam-webster.com/dictionary/event).
While the term event probably brings to mind something notable happening, like the
birth of a child, a wedding, or a sporting event, we’re going to focus on smaller, more
constant events like a customer making a purchase (online or in-person) or clicking a
link on a web page or a sensor transmitting data. Either people or machines can gen-
erate events. It’s the sequence of events and the constant flow of them that make up
an event stream. 

 Events conceptually contain three main components:

 Key—An identifier for the event
 Value—The event itself
 Timestamp—When the event occurred

Let’s discuss each of these parts of an event in more detail. The key could be an iden-
tifier for the event, and as we’ll learn in later chapters, it plays a role in routing and
grouping events. Think of an online purchase: using the customer ID is an excellent
example of the key. The value is the event payload itself. The event value could be a
trigger, such as activating a sensor when someone opens a door, or a result of some
action like the item purchased in the online sale. Finally, the timestamp is the date-
time when recording when the event occurred. As we go through the various chapters
in this book, we’ll encounter all three components of this “event trinity” regularly. 

 I’ve used a lot of different terms in this introduction, so let’s wrap this section up
with a table of definitions (table 1.1). 

Table 1.1 Definitions

Event Something that occurs and attributes about it recorded

Event Stream A series of events captured in real-time from sources such as mobile or 
IoT devices

Event Streaming Platform Software to handle event streams—capable of producing, consuming, 
processing, and storage of event streams

Apache Kafka The premier event streaming platform—provides all the components of 
an event streaming platform in one battle-tested solution

Kafka Streams The native event stream processing library for Kafka

https://www.merriam-webster.com/dictionary/event
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1.3 An event stream example
Let’s say you’ve purchased a flux capacitor and are excited to receive your new pur-
chase. Let’s walk through the events leading up to the time you get your brand new
flux capacitor, using the illustration in figure 1.1 as your guide.

Consider the steps toward receiving your flux capacitor: b You complete the purchase
on the retailer’s website, and the site provides a tracking number. c The retailer’s ware-
house receives the purchase event information and puts the flux capacitor on a ship-
ping truck, recording the date and time your purchase left the warehouse. d The
truck arrives at the airport, and the driver loads the flux capacitor on a plane and
scans a barcode that records the date and time. e The plane lands, and the package
is loaded on a truck again headed for the regional distribution center. The delivery
service records the date and time they loaded your flux capacitor. f The truck from
the airport arrives at the regional distribution center. A delivery service employee
unloads the flux capacitor, scanning the date and time of the arrival at the distribu-
tion center. g Another employee takes your flux capacitor, scans the package, saves
the date and time, and loads it on a truck bound for delivery to you. h The driver
arrives at your house, scans the package one last time, and hands it to you. You can
start building your time-traveling car!

 From our example here, you can see how everyday actions create events, hence an
event stream. The individual events are the initial purchase, each time the package

Figure 1.1 A sequence of events comprising an event stream starting with the online purchase of the flux capacitor

Customer purchases a flux capacitor. Warehouse ships package and it's
scanned as it's loaded onto the
truck bound for the airport.

Event -> At the distribution
center, the package is scanned
on arrival.

1 2

3

4 5

6 7

Event -> Event ->

Event -> The truck arrives at the
airport and the package
gets scanned when
it's loaded on the plane.

Event -> The plane lands
and the package is scanned
as it's loaded on a truck
bound for the regional
distribution center.

Event -> The flux capacitor
gets loaded on a truck bound
for local delivery.

Event -> The driver arrives
at your house and hands you
the flux capacitor as they
scan it, marking it delivered.

pl
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changes custody, and the final delivery. This scenario represents events generated by
just one purchase. But if you think of the event streams generated by purchases from
Amazon and the various shippers of the products, the number of events could easily
number in the billions or trillions. 

1.4 Introducing the Apache Kafka event streaming 
platform
The Kafka event streaming platform provides the core capabilities to implement your
event streaming application from end to end. We can break down these capabilities
into three main areas: publishing/consuming, durable storage, and processing. This
move, store, and process trilogy enables Kafka to operate as the central nervous sys-
tem for your data.

 Before we go on, it will be helpful to illustrate what it means for Kafka to be the
central nervous system for your data. We’ll do this by showing before and after illustra-
tions. Let’s first look at an event-streaming solution where each input source requires
a separate infrastructure (figure 1.2).

Sales and click
events
generated
are stored in
separate
systems.

Data storage

Messaging
queues routing
to different
consumers

Consumers of
different data
streams

Figure 1.2 Initial event-streaming architecture leads to complexity as the different 
departments and data stream sources need to be aware of the other sources of events.
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In the illustration, individual departments create separate infrastructures to meet
their requirements. However, other departments may be interested in consuming the
same data, which leads to a more complicated architecture to connect the various
input streams. Let’s look at figure 1.3, which shows how the Kafka event streaming
platform can change things.

As you can see from this updated illustration, adding the Kafka event streaming platform
simplifies the architecture dramatically. All components now send their records to Kafka.
Additionally, consumers read data from Kafka with no awareness of the producers.

 At a high level, Kafka is a distributed system of servers and clients. The servers are
called brokers; the clients are record producers sending records to the brokers, and
the consumer clients read records for the processing of events.

1.4.1 Kafka brokers

Kafka brokers durably store your records in contrast with traditional messaging systems
(RabbitMQ or ActiveMQ), where the messages are ephemeral. The brokers store the
data agnosticically as the key-value pairs (and some other metadata fields) in byte for-
mat and are somewhat of a black box to the broker.

Sales and click
events
generated
are stored in
separate
systems.

Data storage

Now any cosumer can
easily access all data that
is available and individual
producers of data don’t
need to be aware of who’s
consuming the data.

All records stream into
Kafka, acting as a central
nervous system data
simplifying the architecture.

Figure 1.3 Using the Kafka event streaming platform with a simplified architecture
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 Preserving events has more profound implications concerning the difference
between messages and events. You can think of messages as “tactical” communication
between two machines, while events represent business-critical data you don’t want to
throw away (figure 1.4).

This illustration shows that Kafka brokers are the storage layer within the Kafka archi-
tecture and sit in the “storage” portion of the event-streaming trilogy. But in addition
to acting as the storage layer, the brokers provide other essential functions such as
serving client requests and coordinating with consumers. We’ll go into details of bro-
ker functionality in chapter 2.

1.4.2 Schema Registry

Data governance is vital to begin with, and its importance only increases as the size
and diversity of an organization grows. Schema Registry stores schemas of the event
records (figure 1.5). Schemas enforce a contract for data between producers and
consumers. Schema Registry also provides serializers and deserializers, supporting
different tools that are Schema Registry aware. Providing (de)serializers means you
don’t have to write your serialization code. We’ll cover Schema Registry in chapter 3.
There’s also a workshop on migrating Schema Registry schemas in appendix A.

 
 

Kafka Brokers are
deployed in a cluster

Every broker in the cluster
acts as a follower and
replicates a portion of the data
from another leader broker.

In a Kafka cluster,
each broker has responsibilities
as a "leader" and "follower."
The follower brokers fetch
data from the leaders, providing
data durability.

The leader broker handles
requests for storing records
from producers or retrieving them
for consumers.

Figure 1.4 You deploy brokers in a cluster, and brokers replicate data for durable storage.
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1.4.3 Producer and consumer clients

The producer client is responsible for sending records into Kafka, and the consumer
is responsible for reading records from Kafka (figure 1.6). These two clients form the
basic building blocks for creating an event-driven application and are agnostic to each
other, allowing for greater scalability. The producer and consumer client also form
the foundation for any higher-level abstraction working with Apache Kafka. We cover
clients in chapter 4.

Supported serialization frameworks are
Avro, JSON Schema. and Protocol Buffers.

Schema Registry server
stores schemas.

Producer Consumer

Record object Record object

Byte arrayByte array

The producer serializes
records into bytes. The consumer uses retrieved

schema to deserialize
bytes into a record.

The producer also stores
the schema extracted
from the object in Schema Registry.

1

2

The consumer retrieves a schema
stored in Schema Registry.

1

2

Byt yyyyyy

Figure 1.5 Schema registry enforces data modeling across the platform.

Producer Consumer

Record object Record object

Byte arrayByte array

Apache Kakfa Broker

Producer clients
serialize records
and send the
bytes to the
broker.

Consumer clients
consume bytes
from the broker
and serialize them
back into objects.

Byt y Byt y

Figure 1.6 Producers write records into Kafka, and consumers read records.
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1.4.4 Kafka Connect

Kafka Connect provides an abstraction over the producer and consumer clients for
importing data to and exporting data from Apache Kafka (figure 1.7). Kafka Connect
is essential in connecting external data stores with Apache Kafka. It also provides an
opportunity to perform lightweight data transformations with Simple Message Trans-
forms (SMTs) when exporting or importing data. We’ll go into details of Kafka Con-
nect in chapter 5.

1.4.5 Kafka Streams

Kafka Streams is Kafka’s native stream processing library (figure 1.8). Kafka Streams is
written in the Java programming language and is used by client applications at the
perimeter of a Kafka cluster; it is not run inside a Kafka broker. It supports perform-
ing operations on event data, including transformations and stateful operations like
joins and aggregations. Kafka Streams is where you’ll do the heart of your work when
dealing with events—chapters 6 to 10 cover Kafka Streams in detail.

1.4.6 ksqlDB

ksqlDB is an event streaming database (figure 1.9). It does this by applying an SQL
interface for event stream processing. Under the covers, ksqlDB uses Kafka Streams to
perform its event streaming tasks. A key advantage of ksqlDB is that it allows you to
specify your event streaming operation in SQL; no code is required. We’ll discuss
ksqlDB in chapter 11.

 Now that we’ve gone over how the Kafka event streaming platform works, includ-
ing the individual components, let’s apply a concrete example of a retail operation
demonstrating how the Kafka event streaming platform works.

MongoDB

Relational DB

Apache Kafka

MongoDB

Relational DB

Elastic search

Kafka Connect source connectors Kafka Connect sink connectors

Source connectors import data from
external systems into a Kafka cluster. Sink connectors export data from a

Kafka cluster into an external system.

stic s

Figure 1.7 Kafka Connect bridges the gap between external systems and Apache Kafka.
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1.5 A concrete example of applying the Kafka event 
streaming platform
Let’s say there is a consumer named Jane Doe, and she checks her email. There’s one
email from ZMart with a link to a page on the ZMart website containing a coupon for
15 percent off the total purchase price. Once on the web page, Jane clicks another
link to activate and print the coupon. While this whole sequence is just another online
purchase for Jane, it represents clickstream events for ZMart. 

 Let’s pause our scenario to discuss the relationship between these simple events
and how they interact with the Kafka event streaming platform. The data generated by
the initial clicks to navigate to and print the coupon creates clickstream information

Apache Kafka

Source topic
Sink topic

Kafka Streams
application

Kafka Streams consumes
records from a source
topic and performs some
processing on each record.

The last part of the
processing stream

writes records back
to a Kafka topic.

Figure 1.8 Kafka Streams is the stream processing API for Kafka.

Figure 1.9 ksqlDB provides streaming database capabilities.
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captured and produced directly into Kafka with a producer microservice. The marketing
department started a new campaign and wants to measure its effectiveness, so the
clickstream events available here are valuable.

 The first sign of a successful project is that users click on the email links to retrieve
the coupon. The data science group is also interested in the prepurchase of click-
stream data. The data science team can track customers’ actions and attribute pur-
chases to those initial clicks and marketing campaigns. The amount of data from this
single activity may seem minor. You have a significant amount of data when you factor
in a large customer base and several different marketing campaigns.

 Now, let’s resume our shopping example. It’s late summer, and Jane has meant to
go shopping to get her children back-to-school supplies. Since tonight is a rare night
with no family activities, she stops off at ZMart on her way home.

 Walking through the store after grabbing everything she needs, Jane walks by the
footwear section and notices some new designer shoes that would go great with her
new suit. She realizes that’s not what she came in for, but what the heck? Life is short
(ZMart thrives on impulse purchases!), so Jane gets the shoes.

 As Jane reaches the self-checkout aisle, she scans her ZMart member card. After
scanning all the items, she scans the coupon, which reduces the purchase by 15 per-
cent. Then Jane pays for the transaction with her debit card, takes the receipt, and
walks out of the store. A little later that evening, Jane checked her email, and there
was a message from ZMart thanking her for her patronage with coupons for discounts
on a new line of designer clothes.

 Let’s dissect the purchase transaction and see whether this event triggers a
sequence of operations performed by the Kafka event streaming platform. So now
ZMart’s sales data streams into Kafka. In this case, ZMart uses Kafka Connect to cre-
ate a source connector to capture the sales as they occur and send them to Kafka.
The sale transaction brings us to the first requirement: the protection of customer
data. In this case, ZMart uses an SMT to mask the credit card data as it goes into
Kafka (figure 1.10).

 As Connect writes records into Kafka, different organizations within ZMart imme-
diately consume them. The department in charge of promotions created an applica-
tion for consuming sales data to assign purchase rewards if the customer is a loyalty
club member. If the customer reaches a threshold for earning a bonus, an email with
a coupon goes out to them (figure 1.11).

 It’s important to note that ZMart processes sales records immediately after the sale.
So, customers get timely emails with their rewards within a few minutes of completing
their purchases. Acting on the purchase events as they happen allows ZMart a quick
response time to offer customer bonuses.

 The Data Science group within ZMart uses the sales data topic as well. It uses a
Kafka Streams application to process the sales data, building up purchase patterns of
what customers in different locations are purchasing the most. The Kafka Streams
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Sales transaction data
is automatically input
into a database.

Jane makes a purchase
at the store.

A source connector
pulls new records
out of the database
to import them into
Kafka.

As the connector reads in
the sales data, it performs
a simple transform on the
sales data and masks the
credit card number.

Apache Kafka

Figure 1.10 Sending all of the sales data directly into Kafka with Connect masking the credit card 
numbers as part of the process

Apache Kafka

Source topic
Sink topic

Kafka Streams
application

Kafka Streams consumes
records from a source
topic and performs some
processing on each record.

The last part of the
processing stream
writes records back
to a Kafka topic. Marketing department microservice

consumes the results of the Kafka
Streams application and sends out
emails to customers earning rewards.

Emails to customers

Figure 1.11 Marketing department application for processing customer points and sending out earned emails
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application crunches the data in real time and sends the results to a sales-trends topic
(figure 1.12).

ZMart uses another Kafka connector to export the sales trends to an external applica-
tion that publishes the results in a dashboard. Another group also consumes from the
sales topic to keep track of inventory and order new items if they drop below a given
threshold, signaling the need to order more of those products.

 At this point, you can see how ZMart uses the Kafka platform. It is important to
remember that with an event streaming approach, ZMart responds to data as it
arrives, allowing it to make quick and efficient decisions. Also, note that you write into
Kafka once, yet multiple groups consume it at different times, independently, so that
one group’s activity doesn’t impede another’s. 

Summary
 Event streaming captures events generated from different sources like mobile

devices, customer interaction with websites, online activity, shipment tracking,
and business transactions. Event streaming is analogous to our nervous system.

 An event is “something that happens,” and the ability to react immediately and
review later is an essential concept of an event streaming platform.

 Kafka acts as a central nervous system for your data and simplifies your event
stream processing architecture.

 The Kafka event streaming platform provides the core capabilities for you to
implement your event streaming application from end to end by delivering the
three main components of publish/consume, durable storage, and processing.

Apache Kafka

Source topic
Sink topic

Kafka Streams
application

Kafka Streams consumes
records from a source
topic and performs some
processing on each record.

The last part of the
processing stream

writes records back
to a Kafka topic.

An elastic source container
consumes the records from the
Kafka Streams application and
exports them to elastic search.

A dashboard application presents
the results for viewing.

Figure 1.12 Kafka Streams application crunching sales data and Kafka Connect exporting the data for a 
dashboard application
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 Kafka brokers are the storage layer and service requests from clients for writing
and reading records. The brokers store records as bytes and do not touch or
alter the contents.

 Schema Registry provides a way to ensure compatibility of records between pro-
ducers and consumers.

 Producer clients write (produce) records to the broker. Consumer clients con-
sume records from the broker. The producer and consumer clients are agnostic
of each other. Additionally, the Kafka broker doesn’t know who the individual
clients are; they only process the requests.

 Kafka Connect provides a mechanism for integrating existing systems, such as
external storage for getting data into and out of Kafka.

 Kafka Streams is the native stream processing library for Kafka. It runs at the
perimeter of a Kafka cluster, not inside the brokers, and provides support for
transforming data, including joins and stateful transformations.

 ksqlDB is an event streaming database for Kafka. It allows you to build robust
real-time systems with just a few lines of SQL. 



Kafka brokers
In chapter 1, I provided an overall view of the Kafka event streaming platform and
the different components that make up the platform. This chapter will focus on the
system’s heart, the Kafka broker. The Kafka broker is the server in the Kafka archi-
tecture and serves as the storage layer.

 In describing the broker behavior in this chapter, we’ll get into some lower-level
details. It’s essential to cover them to give you an understanding of how the broker
operates. Additionally, some of the things we’ll cover, such as topics and partitions,
are essential concepts you’ll need to understand when we get into the client chap-
ter. But as a developer, you won’t have to handle these topics daily.

This chapter covers
 Explaining how the Kafka broker is the storage 

layer in the Kafka event streaming platform

 Describing how Kafka brokers handle requests 
from clients for writing and reading records

 Understanding topics and partitions

 Using JMX metrics to check for a healthy broker
18
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2.1 Introducing Kafka brokers
As the storage layer, the broker manages data, including retention and replication.
Retention is how long the brokers store records. Replication is how brokers make cop-
ies of the data for durable storage, meaning you won’t lose data if you lose a machine. 

 But the broker also handles requests from clients. Figure 2.1 shows the client appli-
cations and the brokers.

To give you a quick mental model of the broker’s role, let’s summarize the illustration:
clients send requests to the broker, and the broker then processes those requests and
sends a response. While I’m glossing over several details of the interaction, that is the
gist of the operation.

NOTE Kafka is a deep subject, so I won’t cover every aspect. I’ll review
enough information to get you started working with the Kafka event stream-
ing platform. For in-depth coverage, look at Kafka in Action by Dylan Scott,
Viktor Gamov, and Dave Klein (Manning, 2022).

You can deploy Kafka brokers on commodity hardware, containers, virtual machines,
or cloud environments. In this book, you’ll use Kafka in a docker container, so you
won’t need to install it directly.

 While you’re learning about the Kafka broker, I’ll need to talk about the producer
and consumer clients. But since this chapter is about the broker, I’ll focus more on
the broker’s responsibilities. So, I’ll leave out some of the client details. But don’t
worry; we’ll get to those details in chapter 4.

 So, let’s get started with some walk-throughs of how a broker handles client
requests, starting with producing. 

2.2 Produce requests
When a client wants to send records to the broker, it does so with a produce request.
Clients send records to the broker for storage so that consuming clients can later read
those records. 

Client requests

The broker processes
incoming requests.

Responses are sent
back to clients.

Figure 2.1 Clients 
communicating with brokers
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 Figure 2.2 is an illustration of a producer sending records to a broker. It’s import-
ant to note these illustrations aren’t drawn to scale. Typically, you’ll have many clients
communicating with several brokers in a cluster. A single client will work with more
than one broker. But it’s easier to get a mental picture of what’s happening if I keep
the illustrations simple. Also, note that I’m simplifying the interaction, but we’ll cover
more details when discussing clients in chapter 4.

Let’s walk through the steps in the illustration:

1 The producer sends a batch of records to the broker. Whether a producer or
consumer, the client APIs always work with a collection of records to encourage
batching.

2 The broker takes the produce request out of the request queue.
3 The broker stores the records in a topic. Inside the topic are partitions. A single

batch of records belongs to a specific partition within a topic, and the records
are always appended at the end.

4 Once the broker stores the records, it responds to the producer. We’ll talk
more about what makes up a successful write later in this chapter and again in
chapter 4.

Now that we’ve walked through an example produce request, let’s walk through
another request type, fetch, which is the logical opposite of producing records: con-
suming records. 

2.3 Fetch requests
Now, let’s look at the other side of the coin, from a produce request to a fetch request.
Consumer clients issue requests to a broker to read (or consume) records from a

Broker Topic A

1

3

Partitions

The broker
appends a batch
of records at
the end of the
topic partitions.

2

4

Kafka
Producer

Figure 2.2 Brokers handling produce records request
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topic with a fetch request. A critical point to understand is that consuming records
does not affect data retention or records availability to other consuming clients. Kafka
brokers can handle hundreds of consumer requests for records from the same topic,
and each request has no effect on the others. We’ll get into data retention later, but
the broker handles it separately from consumers. 

 It’s also important to note that producers and consumers are unaware of each
other. The broker handles produce and consume requests separately; one has nothing
to do with the other. The example in figure 2.3 is simplified to emphasize the overall
action from the broker’s point of view.

So, let’s go through the steps of the illustrated consumer request:

1 The consumer sends a fetch request specifying the offset from which it wants to
start reading records. We’ll discuss offsets in more detail later in the chapter.

2 The broker takes the fetch request out of the request queue.
3 Based on the offset and the topic partition in the request, the broker fetches a

batch of records.
4 The broker sends the fetched batch of records in the response to the consumer.

Now that we’ve completed a walk-through of two common request types, produce and
fetch, I’m sure you noticed a few terms I still need to describe: topics, partitions, and
offsets. Topics, partitions, and offsets are fundamental, essential concepts in Kafka, so
let’s take some time now to explore what they mean. 

2.4 Topics and partitions
In chapter 1, we discussed that Kafka provides storage for data. Kafka durably stores
your data as an unbounded series of key-value pair messages for as long as you want
(messages contain other fields, such as a timestamp, but we’ll get to those details
later). Kafka replicates data across multiple brokers, so losing a disk or an entire bro-
ker means no data is lost. 

Kafka
Consumer

Broker

Topic A1

3

2

4

0 1 2 3 4 5 6

The broker fetches
a batch of records
starting at offset 3.

Figure 2.3 Brokers handling requests from a consumer
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 Specifically, Kafka brokers use the filesystem for storage by appending the incom-
ing records to the end of a file in a topic. A topic represents the directory’s name con-
taining the file to which the Kafka broker appends the records.

NOTE Kafka receives the key-value pair messages as raw bytes, stores them
that way, and serves the read requests in the same format. The Kafka broker is
unaware of the type of record that it handles. By merely working with raw
bytes, the brokers don’t spend time deserializing or serializing the data, allow-
ing for higher performance. We’ll see how you can ensure that topics contain
the expected byte format when we cover Schema Registry in chapter 3.

Topics have partitions, which is a way of further organizing the topic data into slots or
buckets. A partition is an integer starting at 0. So, if a topic has three partitions, the
partition’s numbers are 0, 1, and 2. Kafka appends the partition number to the end of
the topic name, creating the same number of directories as partitions with the form
topic-N where the N represents the partition number.

 Kafka brokers have a configuration, log.dirs, where you place the top-level direc-
tory’s name, which will contain all topic-partition directories. Let’s take a look at an
example in listing 2.1. I will assume you’ve configured log.dirs with the value /var/
kafka/topic-data, and you have a topic named purchases with three partitions.

root@broker:/#  tree /var/kafka/topic-data/purchases*

/var/kafka/topic-data/purchases-0
├── 00000000000000000000.index
├── 00000000000000000000.log
├── 00000000000000000000.timeindex
└── leader-epoch-checkpoint
/var/kafka/topic-data/purchases-1
├── 00000000000000000000.index
├── 00000000000000000000.log
├── 00000000000000000000.timeindex
└── leader-epoch-checkpoint
/var/kafka/topic-data/purchases-2
├── 00000000000000000000.index
├── 00000000000000000000.log
├── 00000000000000000000.timeindex
└── leader-epoch-checkpoint

As you can see here, the topic purchases with three partitions ends up as three direc-
tories, purchases-0, purchases-1, and purchases-2 on the filesystem. The topic
name is more of a logical grouping, while the partition is the storage unit. 

TIP The directory structure shown here was generated using the tree com-
mand, a small command-line tool used to display all contents of a directory.

While we’ll want to discuss those directories’ contents, we still have some details about
topic partitions to cover.

Listing 2.1 Topic directory structure example
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 Topic partitions are the unit of parallelism in Kafka. For the most part, the higher
the number of partitions, the higher your throughput. As the primary storage mecha-
nism, topic partitions allow for the spreading of messages across several machines.
The given topic’s capacity isn’t limited to the available disk space on a single broker.
Also, as mentioned before, replicating data across several brokers ensures you won’t
lose data should a broker lose disks or die.

 Later in this chapter, we’ll discuss load distribution more when discussing replica-
tion, leaders, and followers. We’ll also cover a new feature, tiered storage, where data
is seamlessly moved to external storage, providing virtually limitless capacity later in
the chapter. 

 So, how does Kafka map records to partitions? The producer client determines the
topic and partition for the record before sending it to the broker. Once the broker pro-
cesses the record, it appends it to a file in the corresponding topic-partition directory.

 There are three possible ways of setting the partition for a record:

1 Kafka works with records in key-value pairs. Suppose the key is non-null (keys
are optional). In that case, the producer maps the record to a partition using
the deterministic formula of taking the hash of the key modulo the number of
partitions. This approach means that records with identical keys always land on
the same partition.

2 When building the ProducerRecord in your application, you can explicitly set
the partition for that record, which the producer then uses before sending it.

3 If the message has no key or partition specified, partitions are alternated per
batch. I’ll detail how Kafka handles records without keys and partition assign-
ments in chapter 4.

Now that we’ve covered how topic partitions work, let’s revisit that Kafka always appends
records to the end of the file. I’m sure you noticed the files in the directory example
with an extension of .log (we’ll talk about how Kafka names this file in section 2.6.3).
But these log files aren’t the type developers think of, where an application prints its sta-
tus or execution steps. The term log here is a transaction log, storing a sequence of
events in the order of occurrence. So, each topic partition directory contains its transac-
tion log. At this point, asking a question about log file growth would be fair. We’ll discuss
log file size and management when we cover segments later in this chapter.

2.4.1 Offsets

As the broker appends each record, it assigns it an ID called an offset. An offset is a
number (starting at 0) the broker increments by 1 for each record. In addition to
being a unique ID, it represents the logical position in the file. The term logical position
means it’s the nth record in the file, but its physical location is determined by the size
in bytes of the preceding records. In section 2.6.3, we’ll talk about how brokers use an
offset to find the physical position of a record. The illustration in figure 2.4 demon-
strates the concept of offsets for incoming records. 
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Since new records always go at the end of the file, they are in order by offset. Kafka
guarantees that records are in order within a partition but not across partitions. Since
records are in order by offset, we could also be tempted to think they are in order by
time, but that’s not necessarily the case. The records are in order by their arrival time
at the broker, but not necessarily by event time. We’ll get more into time semantics in
chapter 4 when we discuss timestamps. We’ll also cover event-time processing in depth
when we get to chapter 9 on Kafka Streams.

 Consumers use offsets to track the position of records they’ve already consumed.
That way, the broker fetches records starting with an offset one higher than the last
one read by a consumer. Let’s look at figure 2.5 to explain how offsets work.

In the illustration, if a consumer reads records with offsets 0–5, the broker only
fetches records starting at offset 6 in the following consumer request. The offsets used
are unique for each consumer and stored in an internal topic named __consumer_
offsets. We’ll go into more detail about consumers and offsets in chapter 4. 

 Now that we’ve covered topics, partitions, and offsets, let’s quickly discuss some
tradeoffs regarding the number of partitions to use. 

0 1 2 3 4 5 6 7

Eight records have been
appended so far.

The broker will assign
the next record appended an
offset of 8.

Figure 2.4 Assigning the offset 
to incoming records

0 1 2 3 4 5 6 7

The consumer has a position
of offset 5 from the previous
batch.

So the next batch for the
consumer starts from offset 6.

8 9 10 11

Figure 2.5 Offsets indicate where a 
consumer has left off reading records.
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2.4.2 Determining the correct number of partitions

Choosing the number of partitions to use when creating a topic is part art and part sci-
ence. One of the critical considerations is the amount of data flowing into a given
topic. More data implies more partitions for higher throughput. But as with anything
in life, there are tradeoffs. 

 Increasing the number of partitions increases the number of TCP connections and
open file handles. How long it takes to process an incoming record in a consumer will
also determine throughput. If you have heavyweight processing in your consumer,
adding more partitions may help, but the slower processing will ultimately hinder per-
formance (Jun Rao, “How to Choose the Number of Topics/Partitions in a Kafka Clus-
ter?” http://mng.bz/4C03).

 Here are some things to consider when setting the number of partitions. You want
to choose a high enough number to cover high-throughput situations, but not so high
that you hit limits for the number of partitions a broker can handle as you create
more and more topics. A good starting point could be the number 30, which is evenly
divisible by several numbers, which results in a more even distribution of keys in the
processing layer (Michael Noll, “Streams and Tables in Apache Kafka: Topics, Parti-
tions, and Storage Fundamentals,” http://mng.bz/K9qg). We’ll talk more about the
importance of key distribution in chapter 4 on clients and chapter 7 on Kafka Streams.

 At this point, you’ve learned that the broker handles client requests and is the stor-
age layer for the Kafka event streaming platform. You’ve also learned about topics,
partitions, and their role in the storage layer.

 Your next step is to get your hands dirty, producing and consuming records to see
these concepts in action. 

NOTE We’ll cover the producer and consumer clients in chapter 4. Console
clients are helpful for learning, quick prototypes, and debugging. But in prac-
tice, you’ll use the clients in your code.

2.5 Sending your first messages
You’ll need to run a Kafka broker to run the following examples. In the previous edi-
tion of this book, the instructions were to download a binary version of the Kafka tar
file and extract it locally. In this edition, I’ve opted to run Kafka via Docker instead.
Specifically, we’ll use Docker Compose, making running a multicontainer docker
application easy. If you are running macOS or Windows, you can install Docker Desk-
top, which includes Docker Compose. For more information on installing Docker, see
the installation instructions on the Docker site: https://docs.docker.com/get-docker/.
Note that you can also use Confluent Cloud (https://www.confluent.io/confluent
-cloud/) for a broker for running your Kafka applications. See appendix B for details
on resources from Confluent. 

 Let’s start working with a Kafka broker by producing and consuming some records.

https://docs.docker.com/get-docker/
https://www.confluent.io/confluent-cloud/
https://www.confluent.io/confluent-cloud/
https://www.confluent.io/confluent-cloud/
http://mng.bz/4C03
http://mng.bz/K9qg
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2.5.1 Creating a topic

Your first step for producing or consuming records is to create a topic. But you’ll
need a running Kafka broker to do that, so let’s take care of that now. I assume you’ve
already installed Docker at this point. To start Kafka, download the docker-compose
.yml file from the source code repo here https://github.com/bbejeck/KafkaStreamsIn
Action2ndEdition. After downloading the file, open a new terminal window and CD
to the directory with the docker-compose.yml file, and run this command docker-
compose up -d. 

TIP Starting docker-compose with the -d flag runs the docker services in the
background. While it’s OK to start Docker Compose without the -d flag,
the containers print their output to the terminal, so you need to open a new
terminal window to do any further operations. 

Wait a few seconds and then run the following command to open a shell on the
docker broker container: docker-compose exec broker bash.

 Using the Docker broker container shell you just opened up, run this command to
create a topic:

kafka-topics --create --topic first-topic\
 --bootstrap-server localhost:9092\       
 --replication-factor 1\      
 --partitions 1     

NOTE Although you’re using Kafka in a Docker container, the commands to
create topics and run the console producer and consumer are the same.

Since you’re running a local broker for testing, you don’t need a replication factor
greater than 1. The same thing goes for the number of partitions; at this point, you
only need one partition for this local development.

 Now you have a topic, let’s write some records to it. 

2.5.2 Producing records on the command line

Now, from the same window you ran the --create --topic command, run the follow-
ing command to start a console producer:

kafka-console-producer --topic first-topic\    
  --bootstrap-server localhost:9092\      
  --property parse.key=true\         
  --property key.separator=":"   

The host:port to connect 
to the broker

Specifies the 
replication factor

The number of partitions

The topic you created 
in the previous step

The host:port for the 
producer client to connect 
to the broker

Specifies that you’ll provide a key
Specifies the separator of

the key and value

https://github.com/bbejeck/KafkaStreamsInAction2ndEdition
https://github.com/bbejeck/KafkaStreamsInAction2ndEdition
https://github.com/bbejeck/KafkaStreamsInAction2ndEdition
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When using the console producer, you need to specify whether you will provide keys.
Although Kafka works with key-value pairs, the key is optional and can be null. Since
the key and value go on the same line, you must specify how Kafka can parse the key
and value by providing a delimiter.

 After you enter the previous command and press Enter, you should see a prompt
waiting for your input. Enter some text like the following:

key:my first message
 key:is something
 key:very simple

You type in each line and then press Enter to produce the records. Congratulations,
you have sent your first messages to a Kafka topic! Now, let’s consume the records you
just wrote to the topic. Keep the console producer running, as you’ll use it again in a
few minutes. 

2.5.3 Consuming records from the command line

Now, it’s time to consume the records you just produced. Open a new terminal win-
dow and run the docker-compose exec broker bash command to get a shell on the
broker container. Then run the following command to start the console consumer:

kafka-console-consumer --topic first-topic\   
 --bootstrap-server localhost:9092\       
 --from-beginning\                              
 --property print.key=true\            
 --property key.separator="-"  

You should see the following output on your console:

key-my first message
 key-is something
 key-very simple

I should briefly discuss why you used the --from-beginning flag. You produced values
before starting the consumer. As a result, you wouldn’t have seen those messages as
the console consumer reads from the end of the topic. So, the --from-beginning
parameter sets the consumer to read from the beginning of the topic. Now, return to
the producer window and enter a new key-value pair. The console window with your
consumer will update by adding the latest record at the end of the current output. 

 This completes your first example, but let’s go through one more example so you
can see how partitions come into play. 

Specifies the topic to
consume from The host:port for the 

consumer to connect 
to the broker

Starts consuming from 
the head of the log

Prints the keysUses the "-" character to
separate keys and values
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2.5.4 Partitions in action

In the previous exercise, you produced and consumed some key-value records, but
the topic only has one partition, so you didn’t see the effect of partitioning. Let’s do
one more example, but this time, we’ll create a new topic with two partitions, produce
records with different keys, and see the differences. 

 You should still have a console producer and consumer running now. Go ahead
and shut both down by entering a CTRL+C command on the keyboard. 

 Now, let’s create a new topic with partitions. Execute the following command from
one of the terminal windows you used to either produce or consume records:

kafka-topics --create --topic second-topic\
 --bootstrap-server localhost:9092\
 --replication-factor 1\
 --partitions 2

For your next step, let’s start a console consumer:

kafka-console-consumer --topic second-topic\
 --bootstrap-server broker:9092 \
 --property print.key=true \
 --property key.separator="-" \
 --partition 0          

This command is similar to the one you executed before, but you specify the partition
from which you’ll consume the records. After running this command, you will see
something on the console once you start producing records in your next step. Now,
let’s start up another console producer:

kafka-console-producer --topic second-topic\
  --bootstrap-server localhost:9092\
  --property parse.key=true\
  --property key.separator=":"

After you’ve started the console producer, enter these key-value pairs:

key1:The lazy
key2:brown fox
key1:jumped over
key2:the lazy dog

You should only see the following records from the console consumer you have running:

key1:The lazy
key1:jumped over

You don’t see the other records here because the producer assigned them to partition 1.
You can test this for yourself by executing a CTRL+C in the terminal window of the cur-
rent console consumer and then running the following:

Specifies the 
partition we’ll 
consume from
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kafka-console-consumer --topic second-topic\
 --bootstrap-server broker:9092\
  --property print.key=true\
  --property key.separator="-"\
  --partition 1\
  --from-beginning

You should see the following results:

key2:brown fox
key2:the lazy dog

You will see all the records produced for the topic if you rerun the previous consumer
without specifying a partition. We’ll go into more detail about consumers and topic
partitions in chapter 4.

 We’re done with the examples at this point, so you can shut down the producer
and the consumer by entering a CTRL+C command. Then you can stop all the Docker
containers now by running docker-compose down.

 To quickly recap this exercise, you’ve just worked with the core Kafka functionality.
You produced some records to a topic; then, in another process, you consumed them.
While in practice, you’ll use topics with higher partition counts, a much higher vol-
ume of messages, and something more sophisticated than the console tools, the con-
cepts are the same.

 We’ve also covered the basic unit of storage the broker uses, partitions. We dis-
cussed how Kafka assigns each incoming record a unique, per-partition ID, the offset,
and always appends records at the end of the topic partition log. But as more data
flows into Kafka, do these files continue to grow indefinitely? The answer to this ques-
tion is no, and we’ll cover how the brokers manage data in the next section. 

2.6 Segments
So far, you’ve learned that brokers append incoming records to a topic partition file.
But they don’t continue to append to the same one, which would create substantial
monolithic files. Instead, brokers break up the files into discrete parts called seg-
ments. Using segments to enforce the data retention settings and retrieve records by
offset for consumers is much easier. 

 Earlier in the chapter, I stated the broker writes to a partition; it appends the
record to a file. But a more accurate statement is the broker appends the record to
the active segment. The broker creates a new segment when a log file reaches a specific
size (1 MB by default). The broker still uses previous segments to serve read (con-
sume) consumer requests. Let’s look at an illustration of this process in figure 2.6. 

 Following along in the illustration here, the broker appends incoming records to the
currently active segment. Once it reaches the configured size, the broker creates a new
segment that is considered the active segment. This process is repeated indefinitely.

 The configuration controlling the size of a segment is log.segment.bytes, which
again has a default value of 1 MB. Additionally, the broker will create new segments
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over time. The log.roll.ms or log.roll.hours governs the maximum time before the
broker creates a new segment. The log.roll.ms is the primary configuration but has no
default value. The default value of the log.roll.hours is 168 hours (7 days). When a bro-
ker creates a new segment based on time, a new record has a timestamp greater than the
earliest timestamp in the currently active segment plus the log.roll.ms or log.roll
.hours configuration. It’s not based on wall clock time or when the file was last modified.

NOTE The number of records in a segment won’t necessarily be uniform, as
figure 2.6 might suggest here. In practice, they could vary in the total number
of records. Remember, the total size or age of the segment triggers the broker
to create a new one.

Now that we have covered how brokers create segments, we can discuss their data
retention role.

2.6.1 Data retention

As records continue to come into the brokers, the brokers will need to remove older
records to free up space on the filesystem over time. Brokers use a two-tiered approach
to deleting data, time, and size. For time-based deletion, Kafka deletes records older
than a configured retention time based on the record’s timestamp. If the broker placed
all records in one big file, it would have to scan the file to find all those records eligible
for deletion. But with the records stored in segments, the broker can remove segments
where the latest timestamp exceeds the configured retention time. There are three
time-based configurations for data deletion presented here in order of priority:

 log.retention.ms—How long to keep a log file in milliseconds
 log.retention.minutes—How long to keep a log file in minutes
 log.retention.hours—How long to keep a log file in hours

By default, only the log.retention.hours configuration has a default value of 168
(7 days). Kafka has the log.retention.bytes configuration for size-based retention.
By default, it’s set to -1. If you configure size- and time-based retention, brokers delete
segments whenever they meet either condition. 

0 1 2 3 4 5

6 7 8

This segment reached its
configured size.

So the broker
created a new active segment.
The broker appends new
records to the active segment

When the current segment reaches
the configured size, the broker
creates a new segment again

The offsets
are continuous
in order across
the segments.

Figure 2.6 Creating new segments
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 So far, we’ve focused our discussion on data retention based on the elimination of
entire segments. If you remember, Kafka records are in key-value pairs. What if you
wanted to retain the latest record per key? That would mean not removing entire seg-
ments but only removing the oldest records for each key. Kafka provides just such a
mechanism called compacted topics. 

2.6.2 Compacted topics

Consider the case where you have keyed data and receive updates for that data over
time, meaning a new record with the same key will update the previous value. For
example, a stock ticker symbol could be the key, and the price per share would be the
regularly updated value. Imagine you’re using that information to display stock values,
and you have a crash or restart. You need to be able to start back up with the latest
data for each key (see the Kafka documentation, “Log Compaction,” http://kafka
.apache.org/documentation/#compaction). 

 If you use the deletion policy, a broker could remove a segment between the last
update and the application’s crash or restart. You wouldn’t have all the records on
startup. Retaining the final known value for a given key would be better than treating
the next record with the same key as an update to a database table.

 Updating records by key is the behavior that compacted topics (logs) deliver.
Instead of taking a coarse-grained approach and deleting entire segments based on
time or size, compaction is more fine-grained and deletes old records per key in a log.
At a high level, the log cleaner (a pool of threads) runs in the background, recopying
log-segment files and removing records if there’s an occurrence later in the log with
the same key. Figure 2.7 illustrates how log compaction retains the most recent mes-
sage for each key.

Before compaction After compaction

Offset ValueKey

Offset ValueKey

10 Afoo

11 Bbar

12 Cbaz

Dfoo13 Dfoo

14 Ebaz

15 Fboo

16 Gfoo

17 Hbaz

11 Bbar

15 Fboo

16 Gfoo

17 Hbaz

Figure 2.7 On the left is a log before compaction. You’ll notice duplicate keys with different values. 
These duplicates are updates. On the right is after compaction, which retains the latest value for each 
key, but it’s smaller in size.

http://kafka.apache.org/documentation/#compaction
http://kafka.apache.org/documentation/#compaction
http://kafka.apache.org/documentation/#compaction
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This approach guarantees that the last record for a given key is in the log. You can
specify log retention per topic, so it’s entirely possible to use time-based retention and
for other topics, use compaction.

 By default, the log cleaner is enabled. To use compaction for a topic, you must set
the log.cleanup.policy=compact property when creating it. 

 Compaction is used in Kafka Streams when using state stores, but you won’t create
those logs/topics yourself—the framework handles that task. Nevertheless, it’s essen-
tial to understand how compaction works. Log compaction is a broad subject, and
we’ve only touched on it here. For more information, see the Kafka documentation:
http://kafka.apache.org/documentation/#compaction.

NOTE With a cleanup.policy of compact, you might wonder how to remove
a record from the log. You delete with compaction by using a null value for
the given key, creating a tombstone marker. Tombstones ensure that compac-
tion removes prior records with the same key. Kafka removes the tombstone
marker later to free up space.

The key takeaway from this section is that if you have independent, standalone events
or messages, use log deletion. If you have updates to events or messages, you’ll want to
use log compaction.

 Now that we’ve covered how Kafka brokers manage data using segments, it would
be an excellent time to reconsider and discuss the topic partition directory contents. 

2.6.3 Topic partition directory contents

Earlier in this chapter, we discussed that a topic is a logical grouping for records, and
the partition is the actual physical storage unit. Kafka brokers append each incoming
record to a file in a directory corresponding to the topic and partition specified in the
record. For review, the following listing provides the contents of a topic-partition. 

/var/kafka/topic-data/purchases-0
├── 00000000000000000000.index
├── 00000000000000000000.log
├── 00000000000000000000.timeindex

NOTE In practice, you’ll most likely not interact with a Kafka broker on this
level. We’re going into this level of detail to provide a deeper understanding
of how broker storage works.

We already know the log file contains the Kafka records, but what are the index and
timeindex files? When a broker appends a record, it stores other fields along with the
key and value. Three fields are

 The offset (which we’ve already covered)
 The size
 The record’s physical position in the segment

Listing 2.2 Contents of topic partition directory

http://kafka.apache.org/documentation/#compaction
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The index is a memory-mapped file that maps offset to position. The timeindex is
also a memory-mapped file containing a mapping of the timestamp to offset. Let’s
look at the index files first in figure 2.8. 

Brokers use the index files to find the starting point for retrieving records based on the
given offset. The brokers do a binary search in the index file, looking for an index–
position pair with the largest offset that is less than or equal to the target offset. The off-
set stored in the index file is relative to the base offset. That means if the base offset is
100, offset 101 is stored as 1; offset 102 is stored as 2, etc. Using the relative offset, the
index file can use two 4-byte entries, one for the offset and the other for the position.
The base offset is the number used to name the file, which we’ll cover soon. 

 The timeindex is a memory-mapped file that maintains a mapping of timestamp to
offset (figure 2.9). 

NOTE A memory-mapped file is a particular file in Java that stores a portion
of the file in memory, allowing for faster reads from the file. For a more
detailed description, read the excellent entry “What Is Memory-Mapped File
in Java” from GeeksForGeeks site (http://mng.bz/wj47).

The file’s physical layout is an 8-byte timestamp and a 4-byte entry for the “relative”
offset. The brokers search for records by looking at the timestamp of the earliest seg-
ment. If the timestamp is smaller than the target timestamp, the broker does a binary
search on the timeindex file looking for the closest entry. 

 So what about the names then? The broker names these files based on the first offset
in the log file. A segment in Kafka comprises the log, index, and timeindex files. So, in
our previous example directory listing, there is one active segment. Once the broker
creates a new segment, the directory will look something like the following listing. 

 

000000000.index 000000000.log

offset, position        ....,offset,position,size....
0, 0 0, 0 , 71

1, 71                        1, 71, 80
2, 151                     2, 151, 85

Figure 2.8 Searching for a start 
point based on offset 2

00000000.timeindex
timestamp, offset

122456789, 0
....

123985789, 100 Figure 2.9 timeindex file

http://mng.bz/wj47
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/var/kafka/topic-data/purchases-0
├── 00000000000000000000.index
├── 00000000000000000000.log
├── 00000000000000000000.timeindex
├── 00000000000000037348.index
├── 00000000000000037348.log
├── 00000000000000037348.timeindex

Based on this directory structure, the first segment contains records with offset 0–37347,
and in the second segment, the offsets start at 37348.

 The files in the topic partition directory are stored in a binary format and aren’t
suitable for viewing. As I mentioned, you won’t interact with the files on the broker,
but sometimes, you may need to view the files’ contents when looking into an issue. 

WARNING You should never modify or directly access the files stored in the topic-
partition directory. Only use the tools provided by Kafka to view the contents.

2.7 Tiered storage
We’ve discussed that brokers are the storage layer in the Kafka architecture. We’ve
also covered how brokers store data in immutable, append-only files and manage data
growth by deleting segments when the data reaches an age exceeding the configured
retention time. But as Kafka can be used for your data’s central nervous system,
meaning all data flows into Kafka, the disk space requirements will continue to grow.
Figure 2.10 depicts this situation. 

As you can see, if you want to store data longer, you’ll have to add more disks to make
space for newly arriving records. This situation means that Kafka users wanting to
keep data longer than the required retention period must offload data from the clus-
ter to more scalable, long-term storage. One could use Kafka Connect (which we’ll
cover in chapter 5) to move the data, but long-term storage requires building differ-
ent applications to access that data.

Listing 2.3 Contents of the directory after creating a new segment

Kafka broker Kafka broker Kafka broker

1 TB 1 TB 1 TB 1 TB

HD disks on broker

1 TB 1 TB 1 TB 1 TB
1 TB 1 TB 1 TB 1 TB

Figure 2.10 Kafka brokers store all data on a local disk, which will continue to grow over time.
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 A new feature in Kafka called Tiered Storage separates the compute and storage
layers. I’ll only give a brief description here, but for more details, you can read KIP-
405 (http://mng.bz/qjZK). At a high level, the proposal is for the Kafka brokers to
have a concept of local and remote storage. Local storage is the same as the brokers
use today, but remote storage would be something more scalable, say S3, for example,
but the Kafka brokers still manage it. Figure 2.11 is another illustration demonstrating
how brokers can handle data retention with tiered storage.

The concept is that the brokers migrate older data to remote storage over time. This
tiered storage approach is essential for two reasons: 

 The Kafka brokers handle the data migration as part of normal operations. Set-
ting up a separate process to move older data is unnecessary.

 The older data is still accessible via the Kafka brokers, so no additional applica-
tions are required to process older data. The use of tiered storage will be seam-
less to client applications. They won’t know or need to know if the records
consumed are local or from the tiered storage.

Using the tiered storage approach effectively gives Kafka brokers the ability to have
infinite storage capabilities. Another benefit of tiered storage, which might not be evi-
dent at first blush, is the improvement in elasticity. Before tiered storage, when adding
a new broker, entire partitions needed to get moved across the network. Remember
from our previous conversation that Kafka distributes topic partitions among the bro-
kers. So, adding a new broker means calculating new assignments and moving the
data accordingly. But with tiered storage, most segments will be in the storage tier

Kafka broker Kafka broker Kafka broker

500G

HD disks on broker

1 TB 1 TB 1 TB 1 TB

500G 500G

Cloud storage

Figure 2.11 Kafka brokers only keep “hot” data locally; all warm and cold records are 
migrated to cloud storage.

http://mng.bz/qjZK
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beyond the active ones. This means there is much less data that needs to get moved
around, so changing the number of brokers will be much faster.

 As of the writing of this book (October 2023) with version 3.6.0, tiered storage
for Apache Kafka is available as an early access feature. Still, at this time, it’s not
recommended for production. Again, for the reader interested in the details involved
in the tiered storage feature, I encourage you to read the details found in KIP-405
(http://mng.bz/qjZK). 

2.8 Cluster metadata
Kafka is a distributed system that requires metadata to manage all activity and state in
the cluster. Having metadata to keep the state of the cluster is integral to Kafka’s archi-
tecture. Historically, Kafka used ZooKeeper (https://zookeeper.apache.org/) for meta-
data management. But now, with KIP-500, Kafka can use Kafka brokers to store the
cluster metadata, with Kafka servers operating in KRaft mode. KIP-500 (http://mng
.bz/7vPx) describes the details. The blog post, “Apache Kafka Needs No Keeper:
Removing the Apache ZooKeeper Dependency” by Colin McCabe (http://mng.bz/
mjrn) describes the process of how and when the changes to Kafka occur. 

 Right now, you can choose to run Kafka in either ZooKeeper mode or KRaft, with
a preference for KRaft mode since the removal of ZooKeeper is targeted for the 4.0
release. Since the target audience for this book is developers and not cluster adminis-
trators, some knowledge of how Kafka uses metadata is sufficient. The storage and use
of metadata enable Kafka to have leader brokers and to do such things as tracking the
replication of topics.

 The use of metadata in a cluster is involved in the following aspects of Kafka
operations:

 Cluster membership—Joining and maintaining membership in a cluster. If a bro-
ker becomes unavailable, ZooKeeper removes the broker from cluster mem-
bership.

 Topic configuration—Keeping track of the topics in a cluster, which broker is the
leader for a topic, how many partitions there are, and any specific configuration
overrides for a topic.

 Access control—Identifying which users (a person or other software) can read
from and write to particular topics.

This has been a quick overview of how Kafka manages metadata. I don’t want to go
into too much detail about metadata management as my approach to this book is
more from the developer’s point of view and not someone who will manage a Kafka
cluster. Now that we’ve briefly discussed Kafka’s need for metadata and how it’s used,
let’s resume our discussion on leaders and followers and their role in replication. 

https://zookeeper.apache.org/
http://mng.bz/7vPx
http://mng.bz/7vPx
http://mng.bz/7vPx
http://mng.bz/mjrn
http://mng.bz/mjrn
http://mng.bz/mjrn
http://mng.bz/qjZK
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2.9 Leaders and followers
So far, we’ve discussed topics’ role in Kafka and how and why topics have partitions.
You’ve seen that partitions aren’t all located on one machine but are spread out on
brokers throughout the cluster. Now, it’s time to look at how Kafka provides data avail-
ability in the face of machine failures. 

 In the Kafka cluster for each topic partition, one broker is the leader, and the rest
are followers (figure 2.12).

Figure 2.12 has a simplified view of the leader and follower concept. The lead broker
for a topic partition handles all of the produce and consume requests (although it is
possible to have consumers work with followers, and we’ll cover that in chapter 4 on
clients). The follower brokers replicate records from the leader for a given topic parti-
tion. Kafka uses this leader-and-follower relationship for data integrity. Remembering
that the leadership for the topic is essential, partitions are spread around the cluster.
No single broker is the leader for all partitions of a given topic.

 But before we discuss how leaders, followers, and replication work, we must con-
sider what Kafka does to enable replication with leaders and followers.

2.9.1 Replication

In the previous section on leaders and followers, I mentioned that topic partitions
have a leader broker and one or more followers. Figure 2.12 shows this concept. Once
the leader adds records to the log, the followers read from the leader. 

 Kafka replicates records among brokers to ensure data availability should a broker
in the cluster fail. Figure 2.13 demonstrates the replication flow between brokers. A
user configuration determines the replication level, but using a setting of three is rec-
ommended. With a replication factor of 3, the lead broker is considered replica 1, and
two followers are replicas 2 and 3.

Lead broker

Follower broker

Follower broker

Producer client

Producer client
sends records
to the leader.

Followers replicate
from the leader.

Figure 2.12 Leader and 
follower example
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The Kafka replication process is straightforward. Brokers following a topic partition
consume messages from the topic-partition leader. After the leader appends new
records to the log, followers consume from the leader and append them to their logs.
After the followers add the records, their logs replicate the leader’s log with the same
data and offsets. When fully caught up to the leader, these following brokers are con-
sidered an in-sync replica (ISR).

 When a producer sends a batch of records, the leader must append them before
the followers can replicate them. There is a small window of time where the leader will
be ahead of the followers. Figure 2.14 demonstrates this concept.

 In practical terms, this slight lag of replication records is no issue. But, we must
ensure that it does not fall too far behind, as this could indicate a problem with the
follower. So, how do we determine what’s not too far back? Kafka brokers have the
configuration replica.lag.time.max.ms (figure 2.15).

 The replica lag time configuration sets an upper bound on how long followers
must issue a fetch request or be entirely caught up for the leader’s log. Followers fail-

The topic foo has 2 partitions and a replication
level of 3. Dashed lines between partitions point
to the leader of the given partition. Producers
write records to the leader of a partition, and
the followers read from the leader.

Broker 1 is the leader for partition 0 and
is a follower for partition 1 on broker 3.

foo topic partition 1

Kafka broker 1

foo topic partition 0

foo topic partition 0

Kafka broker 2

foo topic partition 1

foo topic partition 1

Kafka broker 3

foo topic partition 0

Broker 2 is a follower for partition 0 on broker
1 and a follower for partition 1 on broker 3.

Broker 3 is a follower for partition 0 on
broker 1 and the leader for partition 1.

Figure 2.13 The Kafka replication process
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ing to do so within the configured time are considered too far behind and removed
from the ISR list.

 As I previously stated, follower brokers caught up with their leader broker are con-
sidered an ISR. ISR brokers can be elected leaders should the current leader fail or
become unavailable (see the Kafka documentation, “Replication,” http://kafka.apache
.org/documentation/#replication).

 In Kafka, consumers never see records that all ISRs haven’t written. The offset of
the latest record stored by all replicas is known as the high-water mark, and it rep-
resents the highest offset accessible to consumers. This property of Kafka means that
consumers don’t worry about recently read records disappearing. As an example, con-
sider the situation in figure 2.15. Since offsets 8–10 have yet to be written to all the
replicas, 7 is the highest offset available to consumers of that topic.

 Should the lead broker become unavailable or die before records 8–10 persist, an
acknowledgment isn’t sent to the producer, and it will retry sending the records. There’s
a little more to this scenario, and we’ll talk about it more in chapter 4 on clients.

0 1 2 3 4 6 75 8

0 1 2 3 4 5 6 7

Leader

9 10

0 1 2 3 4 5 6 7

Follower 1

Follower 2
Newly appended records
followers have not made
a fetch request yet, so
latest records
unreplicated.

Figure 2.14 The leader 
may have a few unreplicated 
messages in its topic partition.

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7

Leader

9 10

0 1 2 3 4 5 6 7

Follower 1

Follower 2

8 9 10

Follower 2 must be fully
caught up to the leader or
issue a fetch request within
replica.lag.time.max.ms or
it's considered out of sync.

Figure 2.15 Followers 
must issue a fetch request 
or be caught up within the 
lag time configuration.

http://kafka.apache.org/documentation/#replication
http://kafka.apache.org/documentation/#replication
http://kafka.apache.org/documentation/#replication
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 If the leader for a topic partition fails, a follower has a complete replica of the
leader’s log. But we should explore the relationship between leaders, followers, and
replicas.

REPLICATION AND ACKNOWLEDGMENTS

When writing records to Kafka, the producer can wait for acknowledgment of
record persistence of none, some, or all for in-sync replicas. These different settings
allow the producer to trade off latency for data durability. But there is a crucial
point to consider. 

 The leader of a topic-partition is considered a replica itself. The configuration
min.insync.replicas specifies how many replicas must be in sync to consider a record
committed. The default setting for min.insync.replicas is one. Assuming a broker
cluster size of three and a replication factor of 3 with a setting of acks=all, only the
leader must acknowledge the record. Figure 2.16 demonstrates this scenario.

How can something like this happen? Imagine that the two followers temporarily lag
enough for the controller to remove them from the ISR. This means that even with
setting acks=all on the producer, there is potential data loss should the leader fail
before the followers can recover and become in sync again.

 To prevent such a scenario, you need to set the min.insync.replicas=2. Setting
the min in-sync replicas configuration to 2 means the leader checks the number of in-
sync replicas before appending a new record to its log. The leader only processes the
produce request if the required number of in-sync replicas is met. Instead, the leader
throws a NotEnoughReplicasException, and the producer will retry the request.

 Let’s look at another illustration in figure 2.17 to help get a clear idea of what is
going on.

 As you can see in figure 2.17, a batch of records arrives. But the leader won’t append
them because there aren’t enough in-sync replicas. Doing so increases your data dura-

0 1 2 3 4 5

0 2

Leader

0 1 2 3

Follower 1

Follower 2

1

New record

acks=all
min.in.sync.replica= 1 (default setting)

Although both followers are out of sync,
the record is accepted because all
in-sync brokers (the leader here) have
added the record to its log.

Figure 2.16 acks set to all with default in-sync replicas
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bility as the produce request will only succeed once enough in-sync replicas exist. This
discussion of message acknowledgments and in-sync replicas is broker-centric. In
chapter 4, when we discuss clients, we’ll revisit this idea from the producer client’s
perspective to discuss the performance tradeoffs. 

2.10 Checking for a healthy broker
At the beginning of the chapter, we covered how a Kafka broker handles requests
from clients and processes them in the order of their arrival. Kafka brokers handle
several types of requests, including, for example 

 Produce—A request to append records to the log
 Fetch—A request to consume records from a given offset
 Metadata—A request for the cluster’s current state—broker leaders for topic

partitions, topic partitions available, etc.

These are a small subset of all possible requests made to the broker. The broker pro-
cesses requests in first-in,-first-out processing order, passing them off to the appropri-
ate handler based on the request type.

 Simply put, a client makes a request, and the broker responds. If requests come in
faster than the broker can reply, they queue up. Internally, Kafka has a thread pool
dedicated to handling incoming requests. This process leads us to the first line of
checking for issues should your Kafka cluster performance suffer.

 With a distributed system, you must embrace failure as a way of life. However, this
doesn’t mean the system should shut down at the first sign of an issue. Network parti-
tions are expected in a distributed system, frequently resolving quickly. It makes sense
to have a notion of retryable errors versus fatal errors. If you are experiencing issues
with your Kafka installation or timeouts for producing or consuming records, for
example, where’s the first place to look?

0 1 2 3 4 5

0 2

Leader

0 1 2 3

Follower 1

Follower 2

1

New record

acks=all
min.in.sync.replica= 2

Now with min.insync.replicas set to
2, new records are rejected with
a NotEnoughReplicas exception.

Figure 2.17 Setting the min ISR to a value greater than 1 increases data durability.
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2.10.1 Request handler idle percentage

When experiencing issues with a Kafka-based application, a good first check is to
examine the RequestHandlerAvgIdlePercent JMX metric. The RequestHandlerAvg-
IdlePercent metric provides the average fraction of time the threads handling requests
are idle, with a number between 0 and 1. Under normal conditions, you’d expect an
idle ratio of 0.7–0.9, indicating that the broker handles requests quickly. If the
request-idle number hits zero, no threads are left for processing incoming requests,
which means the request queue continues to increase. A massive request queue is
problematic, meaning longer response times and possible timeouts. 

2.10.2 Network handler idle percentage

The NetworkProcessorAvgIdlePercent JMX metric is analogous to the request-idle
metric. The network-idle metric measures the average time the network processors
are busy. In the best scenarios, you want to see the number above 0.5. If it’s consis-
tently below 0.5, that indicates a problem. 

2.10.3 Underreplicated partitions

The UnderReplicatedPartitions JMX metric represents the number of partitions
belonging to a broker removed from the ISR. We discussed ISR and replication in
section 2.9.1. A value higher than zero means a Kafka broker is not keeping up with
replicating for assigned follower topic partitions. Causes of a nonzero UnderReplicated-
Partitions metric could indicate network issues or that the broker is overloaded and
can’t keep up. Note that you always want to see the UnderReplicatedPartitions
metric at 0. 

Summary
 The Kafka broker is the storage layer and handles client requests for producing

(writing) and consuming (reading) records.
 Kafka brokers receive records as bytes, store them in the same format, and send

them out for consume requests in byte format.
 Kafka brokers durably store records in topics.
 Topics represent a directory on the filesystem and are partitioned, meaning the

records in a topic are placed in different buckets.
 Kafka uses partitions for throughput and for distributing the load as it spreads

them out on different brokers.
 Kafka brokers replicate data from each other for durable storage.



Part 2

In part 1, you were introduced to the Apache Kafka event streaming plat-
form. You learned, at a high level, the various components that make up the
Kafka platform. You went on from there to learn about how the Kafka broker
operates and the various functions it performs in acting as a central nervous sys-
tem for data. In this part, you’re going to dive in and learn in detail about get-
ting data into Kafka.

 First up is Schema Registry. Schema Registry helps enforce the implied con-
tract between Kafka producers and consumers (If you don’t know what I mean
by an implied contract, don’t worry; I’ll explain it). But you might say, “I don’t
use schemas.” Well, here’s the rub: you are always using one; it just depends on
whether it’s an explicit or implicit schema. By the end of chapter 3, you’ll fully
understand what I mean by that statement and how Schema Registry solves the
problem.

 Next, you’ll move on to the workhorses of the Kafka platform, producer and
consumer clients. You’ll see how producers get data into Kafka and how consum-
ers get it out. Learning about the Kafka clients is essential because there are
important tools in Kafka that are abstractions over producer and consumer cli-
ent, so understanding how they work is essential.

 Finally, you’ll discover Kafka Connect. Built on top of Kafka producer and
consumer clients, Connect is a bridge between the outside world and Kafka.
Source connectors pull data into Kafka from relational databases or just about
any external data store or system such as ElasticSearch, Snowflake, or S3. Sink
connectors do the opposite, exporting data from Kafka into external systems.





Schema Registry
In chapter 2, you learned about the heart of the Kafka streaming platform, the
Kafka broker. In particular, you learned how the broker is the storage layer append-
ing incoming messages to a topic, serving as an immutable, distributed log of
events. A topic represents the directory containing the log file(s).

 Since the producers send messages over the network, they must be serialized
first into binary format, an array of bytes. The Kafka broker does not change the
messages in any way; it stores them in the same format. It’s the same when the bro-
ker responds to fetch requests from consumers; it retrieves the already serialized
messages and sends them over the network.

This chapter covers 
 Using bytes means serialization rules

 What a schema is and why you need to use one

 What Schema Registry is

 Ensuring compatibility with changes—schema 
evolution

 Understanding subject names

 Reusing schemas with references
45
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 By only working with messages as arrays of bytes, the broker is entirely agnostic to
the data type the messages represent and utterly independent of the applications pro-
ducing and consuming the messages and the programming languages those applica-
tions use. Decoupling the broker from the data format permits any client using the
Kafka protocol to produce or consume messages.

3.1 Objects
While bytes are essential for storage and transport over the network, developers are
far more efficient working at a higher level of abstraction: the object. So, where does
this transformation occur, then? At the client level, the producers and consumers of
messages (figure 3.1). 

Looking at this illustration, the message producer uses an instance of a Serializer to
convert the message object into bytes before sending it to the topic on the broker. The
message consumer does the opposite process: it receives bytes from the topic and uses
an instance of a Deserializer to convert the bytes back into the same object format.
The producer and consumer are decoupled from the (de)serializers; they call either
the serialize or deserialize method (figure 3.2). 

 As depicted in figure 3.2, the producer expects to use an instance of the Serializer
interface and calls the Serializer.serialize method, passing in an object of a given
type and getting back bytes. The consumer works with the Deserializer interface. The
consumer provides an array of bytes to the Deserializer.deserialize method and
receives an object of a given type in return. 

 The producer and consumer get the (de)serializers via configuration parameters.
We’ll see examples later in the chapter.

NOTE I’m mentioning producers and consumers here and throughout the
chapter, but we’ll only go into enough detail to understand the context

Kafka producer

Broker
The producer uses
a serializer to convert
messages from objects
into bytes before sending
them to a topic.

Kafka cOnsumer

Serializer Deserializer

The consumer uses a
deserializer to convert
messages back to their
object format before
handing the messages
to an application.

Figure 3.1 The conversion of objects to bytes and bytes to objects happens at the 
client level.



473.2 What is a schema, and why do you need one?
required for this chapter. We’ll cover producer and consumer client details in
the next chapter.

The point I’m emphasizing here is that the object type the producer serializes for a
given topic is expected to be the same object type that a consumer deserializes. Since
producers and consumers are completely agnostic of each other, these messages or
event domain objects represent an implicit contract between the producers and con-
sumers.

 So, now the question is, does something exist that developers of producers and
consumers can use that informs them of the proper structure of messages? The
answer to that question is, yes, the schema. 

3.2 What is a schema, and why do you need one?
When you mention the word schema to developers, their first thought is database sche-
mas. A database schema describes its structure, including the names and startups of
the columns in database tables and the relationship between tables. But the schema
I’m referring to here, while similar in purpose, is quite different. 

 For our purposes, I’m referring to a language-agnostic description of an object,
including the name, the fields on the object, and the type of each field. The following
listing is an example of a potential schema in JSON format.

{
"name":"Person",        
  "fields": [                           
    {"name": "name", "type":"string"},  
    {"name": "age", "type": "int"},

Listing 3.1 Basic example of a schema in JSON format

Serializer

Deserializer

0 0 1 10

Object byte[]

Object
0 0 1 10

bytes[]

Kafka Producers execute -> Serializer.serialize(T message)

Kafka Consumers execute -> Deserializer.deserialize(byte[] bytes)

Figure 3.2 The serializer and deserializer are agnostic of the producer and consumer 
and perform the expected action when executing the serialize and deserialize 
methods.

The name of 
the object Defines the fields 

on the object

The names of the 
fields and their types



48 CHAPTER 3 Schema Registry
    {"name": "email", "type":"string"}
  ]
}

Here, our fictional schema describes an object named Person with fields we’d expect
to find on such an object. Now, we have a structured description of an object that pro-
ducers and consumers can use as an agreement or contract on what the object should
look like before and after serialization. In section 3.2.9, I’ll cover details on how you
use schemas in message construction and (de)serialization.

 But for now, I’d like to review some key points we’ve established so far:

 The Kafka broker only works with messages in binary format (byte arrays).
 Kafka producers and consumers are responsible for messages’ (de)serialization.

Additionally, since these two are unaware of each other, the records form a con-
tract between them.

We also learned that we can make the contract between producers and consumers
explicit by using a schema. So we have our why for using a schema, but what we’ve
defined so far is a bit abstract, and we need to answer these questions for the how:

 How do you put schemas to use in your application development lifecycle?
 Given that serialization and deserialization are decoupled from the Kafka pro-

ducers and consumers, how can they use serialization that ensures messages are
in the correct format?

 How do you enforce the correct version of a schema to use? After all, changes
are inevitable.

The answer to these how questions is Schema Registry.

3.2.1 What is Schema Registry?

Schema Registry provides a centralized application for storing schemas, schema vali-
dation, and sane schema evolution (message structure changes) procedures. Perhaps
more importantly, it serves as the source of truth of schemas that producer and con-
sumer clients can quickly discover. Schema Registry provides serializers and deserializ-
ers that you can use to configure Kafka producers and Kafka consumers, easing the
development of applications working with Kafka. 

 The Schema Registry serializing code supports schemas in the serialization frame-
works Avro (https://avro.apache.org/docs/current/) and Protocol Buffers (https://
developers.google.com/protocol-buffers). I’ll refer to Protocol Buffers as “Protobuf”
going forward. Additionally, Schema Registry supports schemas written using the
JSON Schema (https://json-schema.org/), but this is more of a specification versus a
framework. I’ll get into working with Avro and Protobuf JSON Schema as we progress
through the chapter, but for now, let’s take a high-level view of how Schema Registry
works, as shown in figure 3.3. 

https://avro.apache.org/docs/current/
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://json-schema.org/
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Let’s quickly walk through how Schema Registry works based on this illustration:

1 As a producer calls the serialize method, a Schema Registry–aware serializer
retrieves the schema (via HTTP) and stores it in its local cache. 

2 The serializer embedded in the producer serializes the record.
3 The producer sends the serialized message (bytes) to Kafka.
4 A consumer reads the bytes.
5 The Schema Registry–aware deserializer in the consumer retrieves the schema

and stores it in its local cache.
6 The consumer deserializes the bytes based on the schema.
7 The Schema Registry servers produce a message with the schema storing it in

the _schemas topic. 

TIP While I’m presenting Schema Registry as an essential part of the Kafka
event streaming platform, it’s not required. Remember, Kafka producers and
consumers are decoupled from the serializers and deserializers they use. Pro-
viding a class that implements the appropriate interface will work fine with
the producer or consumer. But you will lose the validation checks that come
from using Schema Registry. I’ll cover serializing without Schema Registry at
the end of this chapter.

While the previous illustration gave you a good idea of how Schema Registry works,
there’s an important detail I’d like to point out here. While it’s true that the serializer
or deserializer will reach out to Schema Registry to retrieve a schema for a given
record type, it only does so once—the first time it encounters a record type it doesn’t
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Rest API

Cache
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Producer
Cache

Consumer
CacheRetrieves schema

for serialization
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a local cache
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for deserialization
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a local cache
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consumes bytes

Producer serializes
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objects into
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Figure 3.3 Schema Registry ensures consistent data format between producers and consumers.



50 CHAPTER 3 Schema Registry
have the schema for. After that, the schema needed for (de)serialization operations is
retrieved from a local cache. 

3.2.2 Getting Schema Registry

Our first step is to get Schema Registry up and running. Again, you’ll use Docker
Compose to speed up your learning and development process, so grab the docker-
compose.yml file from the root directory in the book source code. 

 This file is similar to the docker-compose.yml file you used in chapter 2. But, in
addition to the Kafka image, there is an entry for a Schema Registry image. Go ahead
and run docker-compose up -d. To refresh your memory about the Docker com-
mands, the -d is for “detached” mode, meaning the docker containers run in the
background, freeing up the terminal window you’ve executed the command. 

3.2.3 Architecture

Before we go into how you work with Schema Registry, we should get a high-level view
of its design. Schema Registry is a distributed application that lives outside the Kafka
brokers. Clients communicate with Schema Registry via a REST API. A client could be
a serializer (producer), deserializer (consumer), a build tool plugin, or a command-
line request using curl. I’ll cover using build tool plugins—Gradle, in this case—in
section 3.2.6. 

 Schema Registry uses Kafka as storage (write-ahead log) for all its schemas in
_schemas, a single-partitioned, compacted topic. It has a primary architecture, mean-
ing there is one leader node in the deployment, and the other nodes are secondary. 

NOTE The double underscore characters (__)are a Kafka topic naming con-
vention denoting internal topics not meant for public consumption. From
this point forward, we’ll refer to this topic simply as schemas. 

This primary architecture means that only the primary node in the deployment writes
to the schemas topic. Any node in the deployment will accept a request to store or
update a schema, but secondary nodes forward the request to the primary node. Let’s
look at figure 3.4 to demonstrate.

 Anytime a client registers or updates a schema, the primary node produces a
record to the _schemas topic. Schema Registry uses a Kafka producer to write, and all
the nodes use a consumer to read updates. So, you can see that Schema Registry backs
up its local state in a Kafka topic, making schemas very durable. 

NOTE When working with Schema Registry throughout all the examples in the
book, you’ll only use a single node deployment suitable for local development.

But all Schema Registry nodes serve read requests from clients. If any secondary
nodes receive a registration or update request, they forward it to the primary node.
Then, the secondary node returns the response from the primary node. Let’s take a
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look at an illustration of this architecture in figure 3.5 to solidify your mental model of
how this works.

Now that we’ve given an overview of the architecture, let’s get to work by issuing a few
basic commands using Schema Registry REST API. 

A client sends a new schema
or update to an existing one
to a secondary SR node.

The primary node
writes the ID and
schema to the
_schemas topic and
sends the response back
to the secondary SR
node.

The secondary node forwards
the schema to the primary
SR node.

Registration requests
from clients sent to
the primary node are
serviced directly.
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Figure 3.4 Schema Registry is a distributed application where only the primary node communicates 
with Kafka.
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Figure 3.5 All Schema Registry nodes can serve read requests.
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3.2.4 Communication: Using Schema Registry’s REST API

So far, we’ve covered how Schema Registry works. Now, it’s time to see it in action by
uploading a schema and running some additional commands to get more informa-
tion about your uploaded schema. For the initial commands, you’ll use curl and jq in
a terminal window. 

 curl (https://curl.se/) is a command-line utility for working with data via URLs.
jq (https://stedolan.github.io/jq/) is a command-line JSON processor. To install jq
for your platform, visit the jq download site: https://stedolan.github.io/jq/download/.
For curl, it should come with Windows 10+ and macOS. On Linux, you can install it
via a package manager. If you use macOS, you can install both using homebrew
(https://brew.sh/).

 In later sections, you’ll use a Gradle plugin to interact with Schema Registry. After
you get an idea of how the different REST API calls work, you’ll use the Gradle
plugins and some simple producer and consumer examples to see the serialization in
action.

 Typically, you’ll use the build tool plugins to perform Schema Registry actions.
First, they make the development process much faster than running the API calls
from the command line, and second, they will automatically generate source code
from schemas. We’ll cover using build tool plugins in section 3.2.6.

NOTE There are Maven and Gradle plugins for working with Schema Regis-
try, but the source code project for the book uses Gradle, so that’s the plugin
you’ll use.

3.2.5 Registering a schema

Before we start, ensure you’ve run docker-compose up -d to have a running Schema Reg-
istry instance. But there will be nothing registered, so your first step is to register a
schema. Let’s have fun and create a schema for Marvel Comic superheroes, the Avengers.
You’ll use Avro for your first schema, and let’s take a second now to discuss the format. 

{"namespace": "bbejeck.chapter_3",  
 "type": "record",                        
 "name": "Avenger",                        
 "fields": [                                
     {"name": "name", "type": "string"},
     {"name": "real_name", "type": "string"},         
     {"name": "movies", "type":
                      {"type": "array", "items": "string"},
      "default": []        
    }
  ]
}

Listing 3.2 Avro schema for Avengers

The namespace uniquely identifies the schema. For
generated Java code, the namespace is the package name.

The type is record, a complex type. Other 
complex types are enums, arrays, maps, 
unions, and fixed. We’ll go into more detail 
about Avro types later in this chapter.

The name of the record

Declares 
the fields of 
the record

Describes the 
individual fields. 
Fields in Avro are 
either simple or 
complex.Provides a default value. Avro uses the 

default value when deserializing if the 
serialized bytes don’t contain this field.

https://curl.se/
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/download/
https://brew.sh/
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You defined Avro schemas in JSON format. You’ll use this same schema file in sec-
tion 3.2.6 when we discuss the Gradle plugin for code generation and interactions
with Schema Registry. Since Schema Registry supports Protobuf and JSON Schema
formats, let’s take a look at the same type in those schema formats here as well.

syntax = "proto3";          

package bbejeck.chapter_3.proto;       
option java_multiple_files = true;   

message Avenger {                 
    string name = 1;          
    string real_name = 2;
    repeated string movies = 3;  

}

The Protobuf schema looks closer to regular code as the format is not JSON. Protobuf
uses the numbers you see assigned to the fields to identify those fields in the message
binary format. While Avro specification allows for setting default values, in Protobuf
(version 3), every field is considered optional, but you don’t provide a default value.
Instead, Protobuf uses the type of the field to determine the default. For example, the
default for a numerical field is 0; for strings, it’s an empty string, and repeated fields
are an empty list.

NOTE Protobuf is a deep subject, and since this book is about the Kafka event
streaming pattern, I’ll only cover enough of the Protobuf specification for
you to get started and feel comfortable using it. For full details, you can read
the language guide found here: http://mng.bz/5oB1.

Now let’s take a look at the JSON Schema version.

{
  "$schema": "http://json-schema.org/draft-07/schema#",   
  "title": "Avenger",
  "description": "A JSON schema of Avenger object",
  "type": "object",                                            
  "javaType": "bbejeck.chapter_3.json.SimpleAvengerJson",   
  "properties": {    
    "name": {
      "type": "string"
    },
    "realName": {
      "type": "string"
    },

Listing 3.3 Protobuf schema for Avengers

Listing 3.4 JSON Schema schema for Avengers

Defines the version of Protobuf; 
we’re using version 3 in this book.

Declares the package name

Instructs Protobuf to generate 
separate files for the message

Defines the message

Unique field numberA repeated field;
corresponds to a list

References the 
specific schema spec

Specifies the 
type is an object

The javaType 
used when 
deserializing

Lists the fields 
of the object

http://mng.bz/5oB1
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    "movies": {
      "type": "array",
      "items": {
        "type": "string"
      },
      "default": []    
    }
  },
  "required": [
    "name",
    "realName"
  ]
}

The JSON Schema schema resembles the Avro version as both use JSON for the schema
file. The most significant difference between the two is that in the JSON Schema, you
list the object fields under a properties element versus a fields array, and in the fields
themselves, you simply declare the name versus having a name element. 

NOTE Please note there is a difference between a schema written in JSON
format and one that follows the JSON Schema format. JSON Schema is “JSON
Schema is the vocabulary that enables JSON data consistency, validity, and
interoperability at scale” (https://json-schema.org/). As with Avro and Proto-
buf, I will focus on enough for you to use it in your projects, but for in-depth
coverage, you should visit https://json-schema.org/ for more information.

I’ve shown the different schema formats here for comparison. But in the rest of the
chapter, I’ll usually only show one version of a schema in an example to save space.

 Now that we’ve reviewed the schemas, let’s go ahead and register one. The com-
mand to register a schema with REST API on the command line looks like the follow-
ing listing.

jq '. | {schema: tojson}' src/main/avro/avenger.avsc | \  
curl -s -X
   POST http://localhost:8081/subjects/avro-avengers-value/versions\   
   -H "Content-Type: application/vnd.schemaregistry.v1+json" \    
   -d @-  \          
   | jq   

The result from running this command should look like the following listing.

Listing 3.5 Registering a schema on the command line

Specifies a 
default value

Uses the jq tojson function to format the avenger.avsc 
file (new lines aren’t valid JSON) for uploading and 
then pipes the result to the curl command

The POST URL for adding the schema;
the -s flag suppresses the progress

info output from curl.

The content 
header

The -d flag specifies the data, and @- means 
read from STDIN (i.e., the data provided by the 
jq command preceding the curl command).

Pipes the JSON response through jq 
to get a nicely formatted response

https://json-schema.org/
https://json-schema.org/
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{
  "id": 1
}

The response from the POST request is the ID that Schema Registry assigned to the
new schema. Schema Registry gives a unique ID (a monotonically increasing num-
ber) to each newly added schema. Clients use this ID to store schemas in their local
cache. 

 Before we move on to another command, I want to call your attention to listing
3.5, specifically subjects/avro-avengers-value/, which specifies the subject name
for the schema. Schema Registry uses the subject name to manage the scope of any
changes made to a schema. In this case, it’s avro-avengers-value, which means that
values (in the key-value pairs) going into the avro-avengers topic need to be in the
format of the registered schema. We’ll cover subject names and their role in making
changes in section 3.3. 

 Next, let’s look at some available commands to retrieve information from Schema
Registry. Imagine you are working on building a new application to work with Kafka.
You’ve heard about Schema Registry, and you’d like to look at a particular schema one
of your co-workers developed, but you can’t remember the name, and it’s the week-
end, and you don’t want to bother anyone. What you can do is list all the subjects of
registered schemas with the command in the following listing.

curl -s "http://localhost:8081/subjects" | jq

The response from this command is a JSON array of all the subjects. Since we’ve only
registered once schema so far, the results should look like this:

[
  "avro-avengers-value"
]

Great, you find here what you are looking for—the schema registered for the avro-
avengers topic. 

 Now let’s consider there have been some changes to the latest schema, and you’d
like to see what the previous version was. The problem is you don’t know the version
history. The next listing shows you all of the versions for a given schema.

curl -s "http://localhost:8081/subjects/avro-avengers-value/versions" | jq

Listing 3.6 Expected response from uploading a schema

Listing 3.7 Listing the subjects of registered schemas

Listing 3.8 Getting all versions for a given schema
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This command returns a JSON array of the versions of the given schema. In our case
here, the results should look like this:

[
  1
]

Now that you have the version number you need, you can run another command to
retrieve the schema at a specific version.

curl -s "http://localhost:8081/subjects/avro-avengers-value/versions/1"\
 | jq '.'

After running this command, you should see something resembling this:

{
  "subject": "avro-avengers-value",
  "version": 1,
  "id": 1,
  "schema": "{\"type\":\"record\",\"name\":\"AvengerAvro\",
      \"namespace\":\"bbejeck.chapter_3.avro\",\"fields\"
      :[{\"name\":\"name\",\"type\":\"string\"},{\"name\"
        :\"real_name\",\"type\":\"string\"},{\"name\"
          :\"movies\",\"type\":{\"type\":\"array\"
            ,\"items\":\"string\"},\"default\":[]}]}"
}

The value for the schema field is formatted as a string, so the quotes are escaped, and
all new-line characters are removed. With a couple of quick commands from a console
window, you’ve been able to find a schema, determine the version history, and view
the schema of a particular version. 

 As a side note, if you don’t care about previous versions of a schema and you only
want the latest one, you don’t need to know the actual latest version number. You can
use the REST API call in the following listing to retrieve the latest schema.

curl -s "http://localhost:8081/subjects/avro-avengers-value/
  versions/latest" | jq '.'

I won’t show the results of this command here, as it is identical to the previous com-
mand.

 That has been a quick tour of some of the commands available in the REST API for
Schema Registry. This is just a small subset of the available commands. For a full refer-
ence, go to http://mng.bz/OZEo.

 Next, we’ll move on to using Gradle plugins to work with Schema Registry and
Avro, Protobuf, and JSON Schema schemas. 

Listing 3.9 Retrieving a specific version of a schema

Listing 3.10 Getting the latest version of a schema

http://mng.bz/OZEo
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3.2.6 Plugins and serialization platform tools

So far, you’ve learned that the event objects written by producers and read by consum-
ers represent the contract between the producer and consumer clients. You’ve also
learned that this implicit contract can be a concrete one in the form of a schema.
Additionally, you’ve seen how you can use Schema Registry to store the schemas and
make them available to the producer and consumer clients when they need to serial-
ize and deserialize records. 

 You’ll see even more functionality with Schema Registry in the upcoming sections.
I’m referring to testing schemas for compatibility, different compatibility modes, and
how changing or evolving a schema can be a relatively painless process for the
involved producer and consumer clients.

 But so far, you’ve only worked with a schema file, and that’s still a bit abstract. As
mentioned earlier in the chapter, developers work with objects when building applica-
tions. Our next step is to see how we can convert these schema files into concrete
objects you can use in an application.

 Schema Registry supports schemas in Avro, Protobuf, and JSON Schema formats.
Avro and Protobuf are serialization platforms that provide tooling for working with
schemas in their respective formats. One of the most essential tools is the ability to
generate objects from the schemas.

 Since JSON Schema is a standard and not a library or platform, you’ll need to use
an open source tool for code generation. For this book, we’re using the https://
github.com/eirnym/js2p-gradle project. For (de)serialization without Schema Regis-
try, I recommend using ObjectMapper from the https://github.com/FasterXML/jackson
-databind project. 

 Generating code from the schema makes your life as a developer more manage-
able, as it automates the repetitive boilerplate process of creating domain objects.
Additionally, since you maintain the schemas in source control (Git, in our case), the
chance for error, such as making a field a string type when it should be a long when
creating the domain objects, is significantly reduced. Also, when making a change to a
schema, you commit the change, and other developers pull the update and regener-
ate the code, and everyone is updated quickly.

 We’ll use the Gradle build tool (https://gradle.org/) to manage the book’s source
code in this book. Fortunately, there are Gradle plugins we can use for working with
Schema Registry, Avro, Protobuf, and JSON Schema. Specifically, we’ll use the follow-
ing plugins:

 https://github.com/ImFlog/schema-registry-plugin—Used for interacting with Schema
Registry (i.e., testing schema compatibility, registering schemas, and configur-
ing schema compatibility)

 https://github.com/davidmc24/gradle-avro-plugin—Used for Java code generation
from Avro schema (.avsc) files

 https://github.com/google/protobuf-gradle-plugin—Used for Java code generation
from Protobuf schema (.proto) files

https://github.com/eirnym/js2p-gradle
https://github.com/eirnym/js2p-gradle
https://github.com/eirnym/js2p-gradle
https://gradle.org/
https://github.com/FasterXML/jackson-databind
https://github.com/FasterXML/jackson-databind
https://github.com/FasterXML/jackson-databind
https://github.com/ImFlog/schema-registry-plugin
https://github.com/davidmc24/gradle-avro-plugin
https://github.com/google/protobuf-gradle-plugin
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 https://github.com/eirnym/js2p-gradle—Used for Java code generation for sche-
mas using the JSON Schema specification

NOTE It’s important to note the distinction between schema files written in
JSON, such as Avro schemas, and those using JSON Schema format (https://
json-schema.org/). In the case of Avro files, they are written as JSON but fol-
low the Avro specification. The JSON Schema files follow the official specifica-
tion for JSON Schemas.

Using the Gradle plugins for Avro, Protobuf, and JSON Schema, you don’t need to
learn how to use the individual tools for each component; the plugins handle all the
work. We’ll also use a Gradle plugin to handle most interactions with Schema Registry.
Let’s start by uploading a schema using a Gradle command instead of a REST API
command in the console. 

3.2.7 Uploading a schema file

The first thing we’ll do is use Gradle to register a schema. We’ll use the same Avro
schema from the REST API commands section. To upload the schema, make sure to
change your current directory (CD) to the base directory of project and run this Gra-
dle command:

./gradlew streams:registerSchemasTask

After running this command, you should see something like BUILD SUCCESSFUL in the
console. Notice that all you need to enter on the command line is the name of the
Gradle task (from the schema registry plugin), and the task registers all the schema
inside the register { } block in the streams/build.gradle file. 

 Now, let’s take a look at the configuration of the Schema Registry plugin in the
streams/build.gradle file.

schemaRegistry {       
    url = 'http://localhost:8081'    

register {
        subject('avro-avengers-value',            
                'src/main/avro/avenger.avsc',   
                'AVRO')                       

     //other entries left out for clarity
    }

  // other configurations left out for clarity
}

Listing 3.11 Configuration for Schema Registry plugin in streams/build.gradle

Start of the Schema Registry configuration 
block in the build.gradle file

Specifies the URL to connect 
to Schema Registry

Registers a schema 
by subject name

Specifies the Avro 
schema file to register

The type of the schema 
you are registering

https://json-schema.org/
https://json-schema.org/
https://json-schema.org/
https://github.com/eirnym/js2p-gradle
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In the register block, you provide the same information, just in the format of a
method call versus a URL in a REST call. Under the covers, the plugin code is still
using the Schema Registry REST API via a SchemaRegistryClient. As a side note,
you’ll notice several entries in the register block in the source code. You’ll use all of
them when you go through the examples in the source code. 

 We’ll cover using more Gradle Schema Registry tasks soon, but let’s move on to
generating code from a schema. 

3.2.8 Generating code from schemas

As I said earlier, one of the best advantages of using the Avro and Protobuf platforms
is the code generation tools. Using the Gradle plugin for these tools takes the conve-
nience a bit further by abstracting away the details of using the individual tools. To
generate the objects represented by the schemas, all you need to do is run the Gradle
task in the following listing. 

./gradlew clean build

Running this Gradle command generates Java code for all the types of schemas in the
project—Avro, Protobuf, and JSON Schema. Now we should talk about where you
place the schemas in the project. The default locations for the Avro and Protobuf
schemas are the src/main/avro and src/main/proto directories, respectively. The
location for the JSON Schema schemas is the src/main/json directory, but you need
to explicitly configure this in the build.gradle file. 

jsonSchema2Pojo {

  source = files("${project.projectDir}/src/main/json")       
  targetDirectory = file("${project.buildDir}/generated-main-json-java") 
  // other configurations left out for clarity
}

NOTE All examples here refer to the schemas found in the streams subdirec-
tory unless otherwise specified.

Here you can see the configuration of the input and output directories for the js2p-
gradle plugin. The Avro plugin, by default, places the generated files in a subdirec-
tory under the build directory named generated-main-avro-java. For Protobuf, we
configure the output directory to match the pattern of JSON Schema and Avro in the
Protobuf block of the build.gradle file, as shown in the following listing. 

 
 

Listing 3.12 Generating the model objects

Listing 3.13 Configuring the location of JSON Schema schema files

The source configuration specifies where the
generation tools can locate the schemas

The targetDirectory is where the
tool writes the generated Java objects
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protobuf {

    protoc {
        artifact = 'com.google.protobuf:protoc:3.25.0'    
    }
}

I’d like to take a quick second to discuss the annotation in listing 3.14. To use Proto-
buf, you need to have the compiler protoc installed. By default the plugin searches
for a protoc executable. But we can use a pre-compiled version of protoc from Maven
Central, which means you don’t have to explicitly install it. But if you prefer to use
your local install, you can specify the path inside the protoc block with path =
path/to/protoc/compiler. 

 So we’ve wrapped up generating code from the schemas. Now it’s time to run an
end-to-end example. 

3.2.9 End-to-end example

We will take everything you’ve learned and run a simple end-to-end example. So far,
you have registered the schemas and generated the required Java files. So your next
steps are to 

1 Create some domain objects from the generated Java files.
2 Produce your created objects to a Kafka topic.
3 Consume the objects you just sent from the same Kafka topic.

While steps 2 and 3 have more to do with clients than Schema Registry, I want to think
about it from this perspective. You’re creating instances of Java objects created from
the schema files, so pay attention to fields and notice how the objects conform to the
structure of the schema. Also, focus on the Schema Registry–related configuration
items, serializer or deserializer, and the URL for communicating with it.

NOTE In this example, you will use a Kafka producer and a Kafka consumer,
but I won’t cover any details of working with them. If you’re still getting famil-
iar with the producer and consumer clients, that’s fine. I’ll go into detail
about producers and consumers in the next chapter. But for now, go through
the examples as is.

If you still need to register the schema files and generate the Java code, let’s do so
now. I’ll repeat the steps and confirm you have run docker-compose up -d to ensure
your Kafka broker and Schema Registry are running.

./gradlew streams:registerSchemasTask      

./gradlew clean build    

Listing 3.14 Configuring Protobuf output

Listing 3.15 Registering schemas and generating Java files

Specifies the 
location of the 
protoc compiler

Registers the schema files

Builds the Java objects 
from schemas
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Now let’s focus on the Schema Registry–specific configurations. Go to the source code
and look at the bbejeck.chapter_3.producer.BaseProducer class. For now, we only
want to look at the following two configurations; we’ll cover more configurations for
the producer in the next chapter:

producerProps.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,
    keySerializer);                                 
producerProps.put(AbstractKafkaSchemaSerDeConfig.SCHEMA_REGISTRY_URL_CONFIG,
    "http://localhost:8081");     

The first configuration sets the Serializer the producer will use. Remember, the Kafka-
Producer is decoupled from the type of the Serializer; it simply calls the serialize
method and gets back an array of bytes to send. So you are responsible for providing
the correct Serializer class. 

 In this case, we will work with objects generated from an Avro schema, so you use
KafkaAvroSerializer. If you look at the bbejeck.chapter_3.producer.avro.Avro-
Producer class (which extends the BaseProducer), you see it pass KafkaAvroSerializer
.class to the parent object constructor. The second configuration specifies the HTTP
endpoint that the Serializer uses to communicate with Schema Registry. These con-
figurations enable the interactions described in figure 3.3. 

 Next, let’s take a quick look at creating an object.

var blackWidow = AvengerAvro.newBuilder()
                .setName("Black Widow")
                .setRealName("Natasha Romanova")
                .setMovies(List.of("Avengers", "Infinity Wars",
                  "End Game")).build();

OK, now you’re thinking, “This code creates an object; what’s the big deal?” While it
could be a minor point, it’s more what you can’t do here that I’m trying to drive
home. You can only populate the expected fields with the correct types, enforcing the
contract of producing records in the desired format. You could update the schema
and regenerate the code.

 But by making changes, you have to register the new schema, and the changes
have to match the current compatibility format for the subject name. So now you can
see how Schema Registry enforces the “contract” between producers and consumers.
We’ll cover compatibility modes and the allowed changes in section 3.4.

 Now, let’s run the following Gradle command to produce the objects to the avro-
avengers topic. 

./gradlew streams:runAvroProducer

Listing 3.16 Instantiating an object from the generated code

Listing 3.17 Running the AvroProducer

Specifies the serializer to use

Sets the location of 
Schema registry
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After running this command, you’ll see some output similar to this:

DEBUG [main] bbejeck.chapter_3.producer.BaseProducer - Producing records
 [{"name": "Black Widow", "real_name": "Natasha Romanova", "movies":
["Avengers", "Infinity Wars", "End Game"]},
{"name": "Hulk", "real_name": "Dr. Bruce Banner", "movies":
["Avengers", "Ragnarok", "Infinity Wars"]},
{"name": "Thor", "real_name": "Thor", "movies":
["Dark Universe", "Ragnarok", "Avengers"]}]

After the application produces these few records, it shuts itself down.

NOTE It’s essential to run this command exactly as shown here, including the
preceding : character. We have three different Gradle modules for our Schema
Registry exercises. We need to ensure the commands we run are for the spe-
cific module. In this case, the : executes the main module only; otherwise, it
will run the producer for all modules, and the example will fail.

Running this command doesn’t do anything exciting, but it demonstrates the ease of
serializing using a Schema Registry. The producer retrieves the schema, stores it
locally, and sends the records to Kafka in the correct serialized format—all without
you having to write any serialization or domain model code. Congratulations, you
have sent serialized records to Kafka!

TIP It could be instructive to look at the log file generated from running this
command. It’s in the book source code’s streams/logs/ directory. The log4j
configuration overwrites the log file with each run, so inspect it before run-
ning the next step. 

Now, let’s run a consumer that will deserialize the records. But as we did with the pro-
ducer, we’re going to focus on the configuration required for deserialization and
working with Schema Registry.

consumerProps.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,
    KafkaAvroDeserializer.class);                  
consumerProps.put(KafkaAvroDeserializerConfig.SPECIFIC_AVRO_READER_CONFIG,
    true);   
consumerProps.put(AbstractKafkaSchemaSerDeConfig.SCHEMA_REGISTRY_URL_CONFIG,
    "http://localhost:8081");      

You’ll notice that you set the SPECIFIC_AVRO_READER_CONFIG to true. What does
SPECIFIC_AVRO_READER_CONFIG do? To answer that question, let’s briefly discuss work-
ing with Avro, Protobuf, and JSON Schema serialized objects. 

 When deserializing one of the Avro, Protobuf, or JSON Schema objects, the spe-
cific object type or a nonspecific container object is deserialized. For example, with

Listing 3.18 Consumer configuration for using Avro

Uses Avro deserializationConfigured to use a SpecificAvroReader

The host:port for Schema Registry



633.2 What is a schema, and why do you need one?
SPECIFIC_AVRO_READER_CONFIG set to true, the deserializer inside the consumer will
return an object of type AvroAvenger, the specific object type. However, if you set
SPECIFIC_AVRO_READER_CONFIG to false, the deserializer returns an object of type
GenericRecord. GenericRecrod still follows the same schema and has the same con-
tent, but the object itself is devoid of any type awareness. As the name implies, it’s sim-
ply a generic container of fields. The example in the following listing should make
clear what I’m saying here. 

AvroAvenger avenger = // returned from consumer with
  //SPECIFIC_AVRO_READER_CONFIG=true
avenger.getName();
avenger.getRealName();     
avenger.getMovies();

GenericRecord genericRecord = // returned from consumer with
  //SPECIFIC_AVRO_READER_CONFIG=false
if (genericRecord.hasField("name")) {
   genericRecord.get("name");
}

if (genericRecord.hasField("real_name")) {    
    genericRecord.get("real_name");
}

if (GenericRecord.hasField("movies")) {
    genericRecord.get("movies");
}

This simple code example shows the differences between the specific returned type
and the generic. With the AvroAvenger object, we can access the available properties
directly, as the object is “aware” of its structure and provides methods for accessing
those fields. But with the GenericRecord object, you need to query whether it con-
tains a specific field before attempting to access it. 

NOTE The specific version of the Avro schema is not just a POJO (plain old
Java object) but extends the SpecificRecordBase class. 

Notice that with GenericRecord, you need to access the field precisely as specified in
the schema, while the specific version uses the more familiar camel case notation. The
difference between the two is that with the specific type, you know the structure, but
with the generic type, since it could represent any arbitrary type, you need to query
for different fields to determine its structure. You will work with a GenericRecord
much like a HashMap.

 However, you don’t have to operate entirely in the dark. You can get a list of fields
from a GenericRecord by calling GenericRecord.getSchema().getFields(). Then,
you could iterate over the list of Field objects and get the names by calling the

Listing 3.19 Specific Avro records vs. GenericRecord

Accesses fields on 
the specific object

Accesses fields on 
the generic object
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Fields.name(). Additionally, you could get the name of the schema with Generic-
Record.getSchema().getFullName(); presumably, at that point, you would know
which fields the record contained. Updating a field, you’d follow a similar approach. 

avenger.setRealName("updated name")
genericRecord.put("real_name", "updated name")

So, this small example shows that the specific object gives you the familiar setter func-
tionality. But in the generic version, you must explicitly declare the field you are
updating. Again, you’ll notice the HashMap behavior updating or setting a field with
the generic version. 

 Protobuf provides a similar functionality for working with specific or arbitrary
types. To work with an arbitrary type in Protobuf, you’d use a DynamicMessage. As with
the Avro GenericRecord, the DynamicMessage offers functions to discover the type
and the fields. With JSON Schema, the specific types are just the objects generated
from the Gradle plugin; there’s no framework code associated with it like Avro or Pro-
tobuf. The generic version is a type of JsonNode since the deserializer uses the jackson-
databind (https://github.com/FasterXML/jackson-databind) API for serialization and
deserialization. 

NOTE The source code for this chapter contains examples of working with
the specific and generic types of Avro, Protobuf, and JSON Schema.

So, when do you use the specific type versus the generic? You’ll use the specific version
if you only have one type of record in a Kafka topic. However, if you have multiple
event types in a topic, you’ll want to use the generic version, as each consumed record
could be a different type. We’ll discuss multiple event types in a single topic later in
this chapter and again in chapter 4 when covering Kafka clients.

 The final thing to remember is to use the specific record type: set the kafka-
AvroDeserializerConfig.SPECIFIC_AVRO_READER_CONFIG to true. The default for
the SPECIFIC_AVRO_READER_CONFIG is false, so the consumer returns the Generic-
Record type if the configuration is not set. 

 With the discussion about different record types completed, let’s resume walking
through your first end-to-end example using Schema Registry. You’ve already pro-
duced some records using the schema you uploaded previously. Now, you need to
start a consumer to demonstrate deserializing those records with the schema.
Again, looking at the log files should be instructive. You’ll see the embedded dese-
rializer downloading the schema for the first record only as it gets cached after the
initial retrieval.

 I should also note that the following example using bbejeck.chapter_3.consumer
.avro.AvroConsumer uses both the specific class type and the GenericRecord type. As
the example runs, the code prints out the type of the consumed record. 

Listing 3.20 Updating or setting fields on specific and generic records

https://github.com/FasterXML/jackson-databind
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NOTE The source code has similar examples for Protobuf and JSON Schema.

So let’s run the consumer example now by executing the command in the following
listing from the root of the book source code project.

./gradlew streams:runAvroConsumer

NOTE Again, the same caveat here about running the command with the pre-
ceding : character; otherwise, it will run the consumer for all modules, and
the example will not work.

The AvroConsumer prints out the consumed records and shuts down. Congratulations,
you’ve just serialized and deserialized records using Schema Registry!

 So far, we’ve covered the types of serialization frameworks supported by Schema
Registry, how to write and add a schema file, and a basic example using a schema.
During the portion of the chapter where you uploaded a schema, I mentioned the
term subject and how it defines the scope of schema evolution. The following section
will teach you how to use the different subject name strategies. 

3.3 Subject name strategies
Schema Registry uses the concept of a subject to control the scope of schema evolu-
tion. Another way to think of the subject is a namespace for a particular schema. In
other words, as your business requirements evolve, you’ll need to change your schema
files to make the appropriate changes to your domain objects. For example, with our
AvroAvenger domain object, you want to remove the hero’s real (civilian) name and
add a list of their powers. 

 Schema Registry uses the subject to look up the existing schema and compare the
changes with the new schema. It performs this check to ensure the changes are com-
patible with the current compatibility mode set. We’ll talk about compatibility modes
in section 3.4. The subject name strategy determines the scope of where Schema Reg-
istry makes its compatibility checks.

 There are three types of subject name strategies: TopicNameStrategy, Record-
NameStrategy, and TopicRecordNameStrategy. You can infer the scope of the name-
spacing implied by the strategy names, but it’s worth reviewing the details. Let’s dive
in and discuss these different strategies now.

NOTE By default, all serializers will attempt to register a schema when serial-
izing if they don’t find the corresponding ID in their local cache. Autoregis-
tration is a great development feature, but you may need to turn it off in a
production setting with a producer configuration setting of auto.register
.schemas=false. Another example of not wanting autoregistration is when
you are using an Avro union schema with references. We’ll cover this topic in
more detail later in the chapter.

Listing 3.21 Running the AvroConsumer
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3.3.1 TopicNameStrategy

The TopicNameStrategy is the default subject in Schema Registry. The subject name
comes from the name of the topic. You saw the TopicNameStrategy in action earlier
in the chapter when you registered a schema with the Gradle plugin. To be more pre-
cise, the subject name is topic-name-key or topic-name-value as you can have differ-
ent types for the key and value requiring different schemas. 

 TopicNameStrategy ensures only one data type on a topic since you can’t register a
schema for a different kind with the same topic name. Having a single type per topic
makes sense in a lot of cases—for example, if you name your topics based on the event
type they store. It follows that they will contain only one record type.

 Another advantage of TopicNameStrategy is that with the schema enforcement
limited to a single topic, you can have another topic using the same record type but a
different schema (figure 3.6). Consider the situation where two departments employ
the same record type but use other topic names. With TopicNameStrategy, these
departments can register completely different schemas for the same record type since
the scope of the schema is limited to a particular topic.

Since TopicNameStrategy is the default, you don’t need to specify any additional con-
figurations. When you register schemas, you’ll use the format of <topic>-value as the
subject for value schemas and <topic>-key as the subject for key schemas. In both
cases, you substitute the topic’s name for the <topic> token.

TopicNameStrategy
topicA

com.acme.Foo
{
"name": "id", "type": "long",
"name": "some field", "type": "string"_

}

topicA-value

Here, the registered schema is <topic-name>-value. This
restricts the type contained in the topic to that of the
registered schema for the value type.

subject

schema

Figure 3.6 TopicNameStrategy enforces having the same type of domain 
object represented by the registered schema for the value and or the key.
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 But there could be cases where you have closely related events and want to pro-
duce those records into one topic. In that case, you’ll want to choose a strategy that
allows different types and schemas in a topic. 

3.3.2 RecordNameStrategy

RecordNameStrategy uses the fully qualified class name (of the Java object represen-
tation of the schema) as the subject name (figure 3.7). By using the record name
strategy, you can now have multiple types of records in the same topic. But the criti-
cal point is that these records have a logical relationship; just their physical layouts
are different.

When would you choose RecordNameStrategy? Imagine you have different Internet
of Things (IoT) sensors deployed. Some sensors measure different events so that the
record structure will be dissimilar. But you still want to have them co-located on the
same topic. 

 Since there can be different types, compatibility checks occur between schemas
with the same record name. Additionally, the compatibility check extends to all topics
using a subject with the same record name.

 To use RecordNameStrategy, you use a fully qualified class name for the subject
when registering a schema for a given record type. For the AvengerAvro object we’ve

RecordNameStrategy

topicA topicB

com.acme.Foo
{
"name": "id", "type": "long",
"name": "some field", "type": "string"_

}

com.acme.Foo
{
"name": "id", "type": "long",
"name": "some field", "type": "string",_
"name": "legacy field", "type": "double"_

}

com.acme.Foo com.acme.Foo

The domain object "Foo" has different schemas,
and since you're using the RecordNameStrategy,
Schema Registry enforces schema compatibility across
all topics for the given record subject name.

Subject

Schema

Subject

Schema

You can't produce records for
Foo with a different schema
even though it's a different
topic.

Figure 3.7 RecordNameStrategy enforces having the same schema for a domain object across different 
topics.
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used in our examples, you would configure the schema registration as shown in the
following listing.

subject('bbejeck.chapter_3.avro.AvengerAvro','src/main/avro/avenger.avsc', 'AVRO')

Then, you must configure the producer and consumer with the appropriate subject
name strategy.

Map<String, Object> producerConfig = new HashMap<>();
 producerConfig.put(KafkaAvroSerializerConfig.VALUE_SUBJECT_NAME_STRATEGY,
  RecordNameStrategy.class);
 producerConfig.put(KafkaAvroSerializerConfig.KEY_SUBJECT_NAME_STRATEGY,
  RecordNameStrategy.class);

Map<String, Object> consumerConfig = new HashMap<>();
 config.put(KafkaAvroDeserializerConfig.KEY_SUBJECT_NAME_STRATEGY,
  RecordNameStrategy.class);
 config.put(KafkaAvroDeserializerConfig.VALUE_SUBJECT_NAME_STRATEGY,
  RecordNameStrategy.class);

NOTE If you are only using Avro for serializing/deserializing the values, you
don’t need to add the configuration for the key. Also, the key and value sub-
ject name strategies do not need to match; I’ve only presented them that
way here.

For Protobuf, use KafkaProtobufSerializerConfig and KafkaProtobufDeserializer-
Config, and for JSON Schema, use KafkaJsonSchemaSerializerConfig and Kafka-
JsonSchemaDeserializerConfig. These configurations only affect how the serializer/
deserializer interacts with the Schema Registry for looking up schemas. Again, serial-
ization is decoupled from the production and consumption processes.

 One thing to consider is that by using only the record name, all topics must use the
same schema. If you want to use different records in a topic but want only to consider
the schemas for that particular topic, you’ll need to use another strategy.

3.3.3 TopicRecordNameStrategy

As you can infer from the name, this strategy also allows multiple record types within a
topic. However, the registered schemas for a given record are only considered within
the scope of the current topic. Let’s look at figure 3.8 to understand better what
this means. 

 As you can see in figure 3.8, topic-A can have a different schema for the record
type Foo from topic-B. This strategy allows you to have multiple logically related types

Listing 3.22 Schema Registry Gradle plugin configuration for RecordNameStrategy

Listing 3.23 Producer configuration for RecordNameStrategy

Listing 3.24 Consumer configuration for RecordNameStrategy



693.3 Subject name strategies
on one topic, but it’s isolated from other topics where you have the same type but use
different schemas.

 Why would you use the TopicRecordNameStrategy? For example, consider this
situation. You have one version of the CustomerPurchaseEvent event object in the
interactions topic that groups all customer event types (CustomerSearchEvent,
CustomerLoginEvent, etc.). But you have an older topic, purchases, that also con-
tains CustomerPurchaseEvent objects. Still, it’s for a legacy system, so the schema is
older and contains different fields from the newer one. TopicRecordNameStrategy
allows these two topics to contain the same type but with different schema versions.
Similar to the RecordNameStrategy you’ll need to configure the strategy, as shown in
the following listing.

subject('avro-avengers-bbejeck.chapter_3.avro.AvengerAvro',
  'src/main/avro/avenger.avsc', 'AVRO')

Then you must configure the producer and consumer with the appropriate subject
name strategy. See, for example, the following listings.

 

Listing 3.25 Schema Registry Gradle plugin configuration for 
TopicRecordNameStrategy

TopicRecordNameStrategy

topicA topicB

com.acme.Foo
{
"name": "id", "type": "long",
"name": "some field", "type": "string"_

}

com.acme.Foo
{
"name": "id", "type": "long",
"name": "some field", "type": "string",_
"name": "legacy field", "type": "double"_

}

topicA-com.acme.Foo topicB-com.acme.Foo

The domain object "Foo" has different schemas,
but since you're using the TopicRecordNameStrategy,
this is allowed as Schema Registry only checks for schema
compatibility for the record type within the scope of
the topic.

Subject

Schema

Subject

Schema

Figure 3.8 TopicRecordNameStrategy allows different schemas for the same domain object across 
different topics.
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Map<String, Object> producerConfig = new HashMap<>();
 producerConfig.put(KafkaAvroSerializerConfig.VALUE_SUBJECT_NAME_STRATEGY,
  TopicRecordNameStrategy.class);
 producerConfig.put(KafkaAvroSerializerConfig.KEY_SUBJECT_NAME_STRATEGY,
  TopicRecordNameStrategy.class);

Map<String, Object> consumerConfig = new HashMap<>();
 config.put(KafkaAvroDeserializerConfig.KEY_SUBJECT_NAME_STRATEGY,
  TopicRecordNameStrategy.class);
 config.put(KafkaAvroDeserializerConfig.VALUE_SUBJECT_NAME_STRATEGY,
  TopicRecordNameStrategy.class);

NOTE The same caveat about registering the strategy for the key applies here
as well. You would only do so if you are using a schema for the key; it’s only
provided here for completeness. Also, the key and value subject name strate-
gies don’t need to match.

Why would you use TopicRecordNameStrategy over either TopicNameStrategy or
RecordNameStrategy? If you want the ability to have multiple event types in a topic,
you need the flexibility to have different schema versions for a given type across
your topics.

 But when considering multiple types in a topic, neither TopicRecordNameStrategy
nor RecordNameStrategy can constrain a topic to a fixed set of types. Using either of
those subject name strategies opens up the topic to an unbounded number of differ-
ent types. In section 3.5, we’ll cover how to improve this situation when we cover
schema references.

 Here’s a quick summary of the different subject name strategies (Table 3.1). Think
of the subject name strategy as a function that accepts the topic name and record
schema as arguments, returning a subject name. TopicNameStrategy only uses the
topic name and ignores the record schema. RecordNameStrategy does the opposite: it
ignores the topic name and only uses the record schema. But TopicRecordName-
Strategy uses both of them for the subject name.

Listing 3.26 Producer configuration for TopicRecordNameStrategy

Listing 3.27 Consumer configuration for TopicRecordNameStrategy

Table 3.1 Schema strategies summary

Strategy
Multiple types 

in a topic
Different versions of objects 

across topics

TopicNameStrategy Maybe Yes

RecordNameStrategy Yes No

TopicRecordNameStrategy Yes Yes
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So far, we’ve covered the subject naming strategies and how Schema Registry uses sub-
jects for name-spacing schemas. But schema management has another dimension:
evolving changes within the schema itself. How do you handle changes like the removal
or addition of a field? Do you want your clients to have forward or backward compatibil-
ity? The following section will cover exactly how you handle schema compatibility. 

3.4 Schema compatibility
When there are schema changes, you need to consider the compatibility with the
existing schema and the producer and consumer clients. If you make a change by
removing a field, how does this affect the producer serializing the records or the con-
sumer deserializing this new format?

 To handle these compatibility concerns, Schema Registry provides four base compat-
ibility modes: BACKWARD, FORWARD, FULL, and NONE. There are also three additional com-
patibility modes, BACKWARD_TRANSITIVE, FORWARD_TRANSITIVE, and FULL_TRANSITIVE,
that extend on the base compatibility mode with the same name. The base compatibil-
ity modes only guarantee that a new schema is compatible with the immediate previ-
ous version. Transitive compatibility specifies that the new schema is compatible with
all earlier versions of a given schema applying the compatibility mode. You can specify
a global compatibility level or a compatibility level per subject. 

 What follows is a description of the valid changes for a given compatibility mode and
an illustration demonstrating the sequence of changes you’d need to make to the pro-
ducers and consumers. See appendix C for a hands-on tutorial on changing a schema.

3.4.1 Backward compatibility

Backward compatibility is the default migration setting. With backward compatibil-
ity, you update the consumer code first to support the new schema (figure 3.9). The
updated consumers can read records serialized with the new or immediate previous
schema. 

Producer upgraded
to use the
latest schema

Topic on broker

Backward compatibility

All consumers upgraded
to use the latest schema.

With backward compatibility,
consumers use the new
schema and can handle records
produced with either the current
schema or the previous one.

Producer using
the previous schema

Figure 3.9 Backward compatibility updates consumers first to use the new schema. Then, 
they can handle records from producers using either the new schema or the previous one.
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As shown in figure 3.9, the consumer can work with the previous and the new sche-
mas. The allowed changes with backward compatibility are deleting fields or adding
optional fields. A field is optional when the schema provides a default value. If the
serialized bytes don’t contain the optional field, the deserializer uses the specified
default value when deserializing the bytes back into an object. 

3.4.2 Forward compatibility

Forward compatibility is a mirror image of backward compatibility regarding field
changes. With forward compatibility, you can add fields and delete optional ones (fig-
ure 3.10). 

Upgrading the producer code first ensures the new fields are correctly populated and
only records in the new format are available. Consumers that need updating can still
work with the new schema as it will ignore the new fields, and the deleted fields have
default values.

 Now, you’ve seen two compatibility types: backward and forward. As the compati-
bility name implies, you must consider changes in one direction. In backward compat-
ibility, you updated the consumers first, as records could arrive in either the new or
old format. In forward compatibility, you first updated the producers to ensure the
records from that time are in the new format. The last compatibility strategy to
explore is the full compatibility mode. 

3.4.3 Full compatibility

You can add or remove fields in full compatibility mode, but there is one catch: any
changes you make must be to optional fields only. An optional field is one where you
provide a default value in the schema definition should the original deserialized
record not provide that specific field. 

All producers upgraded
to the latest schema

Topic on broker

Forward compatibility

Consumer upgraded to
use the latest schema

Consumer using previous
schema

With forward compatibility,
consumers using either the
new schema or the previous
one can handle records
written with the new
schema.

Figure 3.10 Forward compatibility updates producers first to use the new schema, and 
consumers can handle the records either the new schema or the previous one.
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NOTE Avro and JSON Schema support explicitly providing default values.
With Protocol Buffers, version 3 (the version used in the book), every field
automatically has a default based on its type. For example, number types are
0, strings are ", collections are empty, etc.

Since the fields in the updated schema are optional, these changes are compatible
with existing producer and consumer clients. As such, the upgrade order, in this case,
is up to you. Consumers will continue to work with records produced with the new or
old schema. 

3.4.4 No compatibility

Specifying a compatibility of NONE instructs Schema Registry to do just that: no com-
patibility checks. Not using compatibility checks means someone can add new fields,
remove existing fields, or change the field type. Any changes are accepted. 

 Not providing any compatibility checks provides a great deal of freedom. But the
tradeoff is you’re vulnerable to breaking changes that might go undetected until the
worst possible time: in production.

 It could be that every time you update a schema, you upgrade all producers and
consumers simultaneously. Another possibility is to create a new topic for clients to
use. Applications can use the new topic without concerns containing records from the
older, incompatible schema.

 Now you’ve learned how to migrate a schema to use a new version with changes
within the different schema compatibility modes. For review, table 3.2 is a quick sum-
mary table of the various compatibility types.

 But there’s more you can do with schemas. Much like working with objects, you
can share common code to reduce duplication and make maintenance more manage-
able. You can do the same with schema references. 

Producer upgraded
to the latest schema

Producer using
older schema

Topic on broker

Full compatibility

Consumer upgraded to
use the latest schema

Consumer using older
schema

With full compatibility,
consumers can handle
records written with
either the new or
previous schema.

Figure 3.11 Full compatibility allows producers to send with the previous or new 
schema, and consumers can handle the records with either the new schema or the 
previous one.
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3.5 Schema references
A schema reference is just what it sounds like, referring to another schema inside the
current schema. Reuse is a core principle in software engineering, as the ability to use
something you’ve already built solves two issues. First, you could save time by not
rewriting some existing code. Second, when you need to update the original work
(which always happens), all the downstream components using the original get auto-
matically updated. 

 When would you want to use a schema reference? Suppose you have an application
providing information on commercial businesses and universities. To model the busi-
ness, you have a Company schema; for the universities, you have a College schema. A
company has executives, and the college has professors. You want to represent both
with a nested Person domain object. The schemas would look something like the fol-
lowing listing.

"namespace": "bbejeck.chapter_3.avro",
  "type": "record",
  "name": "CollegeAvro",
  "fields": [
    {"name": "name", "type": "string"},
    {"name": "professors", "type":
    {"type": "array", "items": {             
      "namespace": "bbejeck.chapter_3.avro",
      "name":"PersonAvro",                
      "fields": [
        {"name": "name", "type":"string"},
        {"name": "address", "type": "string"},
        {"name": "age", "type": "int"}

Table 3.2 Schema compatibility mode summary

Mode Changes allowed Client update order
Retro guaranteed 

compatibility

Backward Delete fields, add optional 
fields

Consumers, producers Prior version

Backward transitive Delete fields, add optional 
fields

Consumers, producers All previous versions

Forward Add fields, delete optional 
fields

Producers, consumers Prior version

Forward transitive Add fields, delete optional 
fields

Producers, consumers All previous versions

Full Delete optional fields, add 
optional fields

Doesn’t matter Prior version

Full transitive Delete optional fields, add 
optional fields

Doesn’t matter All previous versions

Listing 3.28 College schema

Array of 
professors

The item type 
in the array is a 
Person object.
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      ]
    }},
      "default": []
    }
  ]
}

So you can see here you have a nested record type in your college schema, which is
not uncommon. Now let’s look at the company schema.

{
  "namespace": "bbejeck.chapter_3.avro",
  "type": "record",
  "name": "CompanyAvro",
  "fields": [
    {"name": "name", "type": "string"},
    {"name": "executives", "type":
    {"type": "array", "items": {                
      "type":"record",
      "namespace": "bbejeck.chapter_3.avro",
      "name":"PersonAvro",                    
      "fields": [
        {"name": "name", "type":"string"},
        {"name": "address", "type": "string"},
        {"name": "age", "type": "int"}
      ]
    }},
      "default": []
    }
  ]
}

Again, you have a nested record for the type contained in the schema array. It’s natu-
ral to model the executive or professor type as a person, as it allows you to encapsulate
all the details into an object. But as you can see here, there’s duplication in your sche-
mas. If you need to change the person schema, you need to update every file containing
the nested person definition. Additionally, as you add more definitions, the size and
complexity of the schemas can get unwieldy quickly due to all the nesting of types.

 It would be better to put a reference to the type when defining the array. So let’s
do that next. We’ll put the nested PersonAvro record in its schema file, person.avsc.

 I won’t show the file here, as nothing changes. I’m putting the definition you see
here in a separate file. Now let’s take a look at how you’d update the college.avsc
and company.avsc schema files.

{
  "namespace": "bbejeck.chapter_3.avro",
  "type": "record",

Listing 3.29 Company schema

Listing 3.30 Updated College schema

Array of 
executives

Item type is a 
PersonAvro
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  "name": "CollegeAvro",
  "fields": [
    {"name": "name", "type": "string"},
    {"name": "professors", "type":
    {"type": "array", "items": "bbejeck.chapter_3.avro.PersonAvro"},   
      "default": []
    }
  ]
}

NOTE The referring schema you provide must be the same type when using
schema references. For example, you can’t give a reference to an Avro
schema or JSON Schema inside the Protocol Buffers schema; the reference
must be another Protocol Buffers schema.

Here, you’ve cleaned things up by referencing the object created by the person.avsc
schema. Now let’s look at the updated company schema.

{
  "namespace": "bbejeck.chapter_3.avro",
  "type": "record",
  "name": "CompanyAvro",
  "fields": [
    {"name": "name", "type": "string"},
    {"name": "executives", "type":
      {
        "type": "array", "items": "bbejeck.chapter_3.avro.PersonAvro"},  
        "default": []
       }
  ]
}

Now both schemas refer to the same object created by the person schema file. For
completeness let’s take a look at how you implement a schema reference in both
JSON Schema and Protocol Buffers. First we’ll look at the JSON Schema version.

{
  "$schema": "http://json-schema.org/draft-07/schema#",
  "title": "Exchange",
  "description": "A JSON schema of a Company using Person refs",
  "javaType": "bbejeck.chapter_3.json.CompanyJson",
  "type": "object",
  "properties": {
    "name": {
      "type": "string"
    },
    "executives": {
      "type": "array",

Listing 3.31 Updated Company schema

Listing 3.32 Company schema reference in JSON Schema

This is the new part; it’s a
reference to the person object

This is the new part;
it’s a reference to the

person object.
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      "items": {
        "$ref": "person.json"   
      }
    }
  }
}

The concept with references in JSON Schema is the same, but you provide an explicit
$ref element pointing to the referenced schema file. It’s assumed that the referenced
file is located in the same directory as the referring schema.

 Now let’s take a look at the equivalent reference with Protocol Buffers.

syntax = "proto3";

package bbejeck.chapter_3.proto;

import "person.proto";       

option java_outer_classname = "CompanyProto";
option java_multiple_files = true;

message Company {
  string name = 1;
  repeated Person executives = 2;      
}

With Protocol Buffers, you have a minor extra step of providing an import referring to
the proto file containing the referenced object.

 But now the question is how the (de)serializers will know how to serialize and dese-
rialize the object into the correct format. You’ve removed the definition from inside
the file, so you need to get a reference to the schema as well. Fortunately, Schema
Registry allows schema references.

 You need to register a schema for the person object first. When you register the
schema for the college and company schemas, you reference the already registered
person schema.

 Using the Gradle schema-registry plugin makes this a simple task. The following
listing shows how you would configure it for using schema references.

register {

    subject('person','src/main/avro/person.avsc', 'AVRO')      
    subject('college-value','src/main/avro/college.avsc', 'AVRO')
        .addReference("bbejeck.chapter_3.avro.PersonAvro", "person", 1)  
    subject('company-value','src/main/avro/company.avsc', 'AVRO')

Listing 3.33 Company Schema reference in Protocol Buffers

Listing 3.34 Gradle plugin reference configuration

The reference to 
the Person object 
schema

Import statement 
for the referenced 
schema

Refers to the 
Person proto

Registers the person schema

Registers the college schema and adds
a reference to the person schema
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        .addReference("bbejeck.chapter_3.avro.PersonAvro", "person", 1)  
    }

So you first registered the person.avsc file, but in this case, the subject is simply person
because, in this case, it’s not associated directly with any one topic. Then, you regis-
tered the college and company schemas using the <topic name> - value pattern, as
the college and company schemas are tied to topics with the same names and use the
default subject name strategy (TopicNameStrategy). The addReference method takes
three parameters:

 A name for the reference. Since you’re using Avro, it’s the fully qualified name
of the schema. For Protobuf, it’s the name of the proto file, and for JSON
Schema, it’s the URL in the schema.

 The subject name for the registered schema.
 The version number for the reference.

Now, with the references in place, you register the schemas, and your producer and
consumer client can serialize and deserialize the objects with the references correctly.

 There are examples in the source code for running a producer and consumer with
the schema references in action. Since you’ve already run the ./gradlew streams
:registerSchemasTask for the main module, you’ve already set up your references. To
see using schema references in action, you can run the code in the following listing. 

./gradlew streams:runCompanyProducer

./gradlew streams:runCompanyConsumer

./gradlew streams:runCollegeProducer

./gradlew streams:runCollegeConsumer

3.6 Schema references and multiple events per topic
We’ve covered the different subject strategies RecordNameStrategy and TopicRecord-
NameStrategy and how they allow the production of records of various types for a
topic. But with the RecordNameStrategy, any topic you have must use the same
schema version for the given type. If you want to change or evolve the schema, all top-
ics must use the new schema. Using the TopicRecordNameStrategy allows for multiple
events in a topic, and it scopes the schema to a single topic, allowing you to evolve the
schema independently of other topics. 

 But you can’t control the number of different types produced to the topic with
both approaches. If someone wants to produce a record of another kind that is not
desired, you don’t have any way to enforce this policy.

 However, by using schema references, there is a way to produce multiple event types
to a topic and restrict the types of records produced to the topic. Using TopicName-
Strategy in conjunction with schema references allows all records in the topic to be

Listing 3.35 Tasks for schema references in action

Registers the company schema and
adds a reference to the person schema
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constrained by a single subject. In other words, schema references will enable you to
have multiple types, but only those the schema refers to. This is best understood by
walking through an example scenario. 

 Imagine you are an online retailer and have developed a system for precisely track-
ing packages you ship to customers. You have a fleet of trucks and planes that take
packages anywhere in the country. Each time a package is handled along its route, it’s
scanned into your system, generating one of three possible events represented by
these domain objects: PlaneEvent,TruckEvent, or DeliveryEvent.

 These are distinct events, but they are closely related. Also, since the order of these
events is essential, you want them produced on the same topic so you have all related
events together and in the proper sequence of their occurrence. I’ll cover more about
how combining related events in a single topic helps with sequencing in chapter 4
when we cover clients. Now, assuming you’ve already created schemas for PlaneEvent,
TruckEvent, and DeliveryEvent, you could create a schema like in the following list-
ing to contain the different event types.

[
  "bbejeck.chapter_3.avro.TruckEvent",     
  "bbejeck.chapter_3.avro.PlaneEvent",
  "bbejeck.chapter_3.avro.DeliveryEvent"
]

The all_events.avsc schema file is an Avro union, an array of the possible event types.
You use a union when a field or, in this case, a schema could be of more than one type. 

 Since you’re defining all the expected types in a single schema, your topic can now
contain multiple types, but it’s limited to only those listed in the schema. When using
schema references in this format with Avro, it’s critical to always set auto.register
.schemas=false and use.latest.version=true in your Kafka producer configura-
tion. Here’s why you need to use these configurations with the given settings.

 When the Avro serializer goes to serialize the object, it won’t find the schema since
it’s in the union schema. As a result, it will register the schema of the individual
object, overwriting the union schema. So, setting the auto registration of schemas to
false avoids overwriting the schema problem. In addition, by specifying use.latest
.version=true, the serializer will retrieve the latest version of the schema (the union
schema) and use that for serialization. Otherwise, it would look for the event type in
the subject name, and since it won’t find it, a failure will result.

TIP When using the oneOf field with references in Protocol Buffers, the ref-
erenced schemas are automatically registered recursively, so you can use the
auto.register.schemas configuration set to true. You can also do the same
with JSON Schema oneOf fields. 

Let’s now take a look at how you’d register the schema with references.

Listing 3.36 Avro schema all_events.avsc with multiple events

An Avro union type for 
the different events
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subject('truck_event',
      'src/main/avro/truck_event.avsc', 'AVRO')     
subject('plane_event','src/main/avro/plane_event.avsc', 'AVRO')
subject('delivery_event','src/main/avro/delivery_event.avsc', 'AVRO')

subject('inventory-events-value',
          'src/main/avro/all_events.avsc','AVRO')    
  .addReference("bbejeck.chapter_3.avro.TruckEvent",
                                 "truck_event", 1)         
  .addReference("bbejeck.chapter_3.avro.PlaneEvent", "plane_event", 1)
  .addReference("bbejeck.chapter_3.avro.DeliveryEvent", "delivery_event", 1)

As you saw in section 3.5 with Avro, you need to register the individual schemas before
the schema with the references. After that, you can register the main schema with the
references.

 When working with Protobuf, there isn’t a union type but a oneOf, which is essen-
tially the same thing. However, with Protobuf, you can’t have a oneOf at the top level;
it must exist in a Protobuf message. For your Protobuf example, imagine you want to
track customer interactions, logins, searches, and purchases as separate events. But
since they are closely related, sequencing is essential, so you want them in the same
topic. The following listing shows the Protobuf file containing the references.

syntax = "proto3";

package bbejeck.chapter_3.proto;

import "purchase_event.proto";       
import "login_event.proto";
import "search_event.proto";

option java_multiple_files = true;
option java_outer_classname = "EventsProto";

message Events {

  oneof type {                         
    PurchaseEvent purchase_event = 1;
    LoginEvent login_event = 2;
    SearchEvent search_event = 3;
  }
  string key = 4;
}

You’ve seen a Protobuf schema earlier in the chapter, so I won’t review all the parts
here. Still, critical to this example is the oneOf field type, which could be Purchase-
Event, LoginEvent, or SearchEvent. When you register a Protobuf schema, it has

Listing 3.37 Registering the all_events schema with references

Listing 3.38 Protobuf file with references

Registers the individual schemas
referenced in the all_events.avsc file

Registers all_events schema

Adds the references 
of the individual 
schemas

Imports the individual 
Protobuf messages

The oneOf field, which 
could be one of the 
three types listed
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enough information present to register all of the referenced schemas recursively, so
it’s safe to set the auto.register configuration to true. You can structure your Avro
references similarly.

{
  "type": "record",
  "namespace": "bbejeck.chapter_3.avro",
  "name": "TransportationEvent",        

  "fields" : [
    {"name": "event", "type"[           
      "bbejeck.chapter_3.avro.TruckEvent",       
      "bbejeck.chapter_3.avro.PlaneEvent",
      "bbejeck.chapter_3.avro.DeliveryEvent"
    ]}
  ]
}

So, the main difference between this Avro schema and the previous Avro schema with
references is that this one has an outer class, and the references are now a field in the
class. Also, when you provide an outer class with Avro references like you have done
here, you can now set the auto.register configuration to true, although you still need
to register the schemas for the referenced objects ahead of time as Avro, unlike Proto-
buf, does not have enough information to register the referenced objects recursively.

 There are some additional considerations regarding using multiple types with pro-
ducers and consumers. I’m referring to the generics you use on the Java clients and
how you can determine the appropriate action on an object depending on its con-
crete class name. These topics are better suited for when we cover clients, so we’ll
cover those subjects in the next chapter.

 Now, you’ve learned about the different schema compatibility strategies, how to
work with schemas, and how to use references. In all the examples you’ve run, you’ve
used the built-in serializers and deserializers provided by Schema Registry. The follow-
ing section will cover the configuration for producer and consumer (de)serializers.
But we’ll only cover the configurations related to the (de)serializers, not general pro-
ducer and consumer configuration, which we’ll discuss in the next chapter. 

3.7 Schema Registry (de)serializers
At the beginning of the chapter, I noted that when producing records in Kafka, you
need to serialize the records for transport over the network and storage in Kafka. Con-
versely, when consuming records, you deserialize them so you can work with objects. 

 You must configure the producer and consumer with the classes required for the
serialization and deserialization process. Schema Registry provides a serializer, deseri-
alizer, and a Serde (used in Kafka Streams) for all three supported types (Avro, Proto-
buf, JSON).

Listing 3.39 Avro schema with references using an outer class

Outer class 
name

Field named 
"event"

Avro union for 
the field type
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 Providing the serialization tools is a strong argument for using Schema Registry,
which I addressed earlier in the chapter. Freeing developers from writing serialization
code speeds up development and increases standardization across an organization.
Also, using a standard set of serialization tools reduces errors and the chance that one
team implements a custom serialization framework.

NOTE What’s a Serde? A Serde class contains a serializer and deserializer for
a given type. You will use Serdes when working with Kafka Streams because
you cannot access the embedded producer and consumer. Hence, providing
a class containing the correct serializer and deserializer makes sense. In chap-
ter 6, you’ll see Serdes in action when we start working with Kafka Streams.

In the following sections, I will discuss the configuration for using Schema Registry–
aware serializers and deserializers. One important thing to remember is you don’t
configure the serializers directly. You set the serializer configuration when configuring
the KafkaProducer or KafkaConsumer. If the following sections aren’t entirely clear,
that’s OK because we’ll cover clients (producers and consumers) in the next chapter.

3.7.1 Avroserializers and deserializers

KafkaAvroSerializer and KafkaAvroDeserializer classes can be used to serialize and
deserialize Avro records. When configuring a consumer, you’ll need to include an addi-
tional property, KafkaAvroDeserializerConfig.SPECIFIC_AVRO_READER_CONFIG=true,
indicating that you want the deserializer to create a SpecificRecord instance. Other-
wise, the deserializer returns a GenericRecord.

 Listing 3.40 shows how to add these properties to the producer and consumer.
Note the following example only shows the configurations required for the serializa-
tion. I’ve left out the other configurations for clarity. We’ll cover the configuration of
producers and consumers in chapter 4.

// producer properties
producerProps.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,
  StringSerializer.class);                                    
producerProps.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,
  KafkaAvroSerializer.class);                                 
producerProps.put(AbstractKafkaSchemaSerDeConfig.SCHEMA_REGISTRY_URL_CONFIG,
  "http://localhost:8081");                                 

//consumer properties are set separately on the consumer
props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,
  StringDeserializer.class);                                 
props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,
  KafkaAvroDeserializer.class);    
props.put(KafkaAvroDeserializerConfig.SPECIFIC_AVRO_READER_CONFIG,
  true);    

Listing 3.40 Required configuration for Avro

The serializer 
for the key

The serializer 
for the value

Sets the URL for 
the serializer

The deserializer 
for the key

The deserializer for the value
Indicates to construct a 
specific record instance
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props.put(AbstractKafkaSchemaSerDeConfig.SCHEMA_REGISTRY_URL_CONFIG,
  "http://localhost:8081");         

Next, let’s take a look at the configuration for working with Protobuf records.

3.7.2 Protobuf

To work with Protobuf records, you can use KafkaProtobufSerializer and Kafka-
ProtobufDeserializer classes. When using Protobuf with a schema registry, it’s prob-
ably a good idea to specify both java_outer_classname and java_multiple_files to
true in the Protobuf schema. If you end up using the RecordNameStrategy with Pro-
tobuf, you must use these properties so the deserializer can determine the type when
creating an instance from the serialized bytes. 

 Earlier in the chapter, we discussed that when using Schema Registry–aware serial-
izers, those serializers will attempt to register a new schema. If your Protobuf schema
references other schemas via imports, the referenced schemas are also registered.
Only Protobuf provides this capability; Avro and JSON do not register referenced
schemas automatically. Again, if you don’t want autoregistration of schemas, deacti-
vate it with the following configuration: auto.shema.registration = false.

 Let’s look at a similar example of providing the relevant Schema Registry configu-
rations for working with Protobuf records.

// producer properties
producerProps.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,
  StringSerializer.class);                                      
producerProps.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,
  KafkaProtobufSerializer.class);                                 
producerProps.put(AbstractKafkaSchemaSerDeConfig.SCHEMA_REGISTRY_URL_CONFIG,
  "http://localhost:8081");                                  

// consumer properties again set separately on the consumer
props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,
  StringDeserializer.class);                              
props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,
  KafkaProtobufDeserializer.class);                            
props.put(KafkaProtobufDeserializerConfig.SPECIFIC_PROTOBUF_VALUE_TYPE,
  AvengerSimpleProtos.AvengerSimple.class);                             
props.put(AbstractKafkaSchemaSerDeConfig.SCHEMA_REGISTRY_URL_CONFIG,
  "http://localhost:8081");     

As with the Avro deserializer, you must instruct it to create a specific instance. But in
this case, you configure the actual class name instead of setting a Boolean flag indicat-
ing you want a particular class. If you leave out the specific value type configuration,

Listing 3.41 Required configuration for Protobuf

Sets the URL for 
the deserializer

The key 
serializer

The Protobuf 
value serializer

Provides the URL for 
Schema Registry for 
the consumer

The key deserializer

The Protobuf value 
deserializer

The specific class
the deserializer

should instantiate

The location of 
Schema Registry 
for the producer
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the deserializer returns a type of DynamicRecord. We cover DynamicRecord in sec-
tion C.2.5.

 The bbejeck.chapter_3.ProtobufProduceConsumeExample class in the book
source code demonstrates producing and consuming a Protobuf record. Now, we’ll
move on to the final example of the configuration of Schema Registry’s supported
types, JSON schemas. 

3.7.3 JSON Schema

Schema Registry provides the KafkaJsonSchemaSerializer and KafkaJsonSchema-
Deserializer for working with JSON schema objects. The configuration should feel
familiar to both Avro and the Protobuf configurations. 

NOTE Schema Registry also provides KafkaJsonSerializer and KafkaJson-
Deserializer classes. While the names are very similar, these (de)serializers
are for working with Java objects for conversion to and from JSON without a
JSON Schema. While the names are close, ensure you use the serializer and
deserializer with Schema in the name. We’ll talk about the generic JSON seri-
alizers in the next section. 

// producer configuration
producerProps.put(AbstractKafkaSchemaSerDeConfig.SCHEMA_REGISTRY_URL_CONFIG,
  "http://localhost:8081");     
producerProps.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,
  StringSerializer.class);                                      
producerProps.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,
  KafkaJsonSchemaSerializer.class);                       

// consumer configuration
props.put(AbstractKafkaSchemaSerDeConfig.SCHEMA_REGISTRY_URL_CONFIG,
  "http://localhost:8081");                              
props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,
  StringDeserializer.class);      
props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,
  KafkaJsonSchemaDeserializer.class);            
props.put(KafkaJsonDeserializerConfig.JSON_VALUE_TYPE,
  SimpleAvengerJson.class);    

Here, you can see a similarity with the Protobuf configuration: you need to specify the
class the deserializer should construct from the serialized form in the last line of this
example. If you leave out the value type, the deserializer returns a Map, the generic
form of a JSON Schema deserialization. The same applies to keys. If your key is a
JSON schema object, you’ll need to supply a KafkaJsonDeserializerConfig.JSON_
KEY_TYPE configuration for the deserializer to create the exact class. 

Listing 3.42 Required configuration for JSON Schema
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 There is a simple producer and consumer example for working with JSON schema
objects in the bbejeck.chapter_3.JsonSchemaProduceConsumeExample in the source
code for the book. As with the other basic producer and consumer examples, there
are sections demonstrating how to work with the specific and generic return types.
There’s a discussion of the structure of the JSON schema generic type in section C.3.5.

 Now, we’ve covered the different serializers and deserializers for each type of
serialization supported by Schema Registry. Although using Schema Registry is rec-
ommended, it’s not required. The following section outlines how to serialize and
deserialize your Java objects without Schema Registry. 

3.8 Serialization without Schema Registry
At the beginning of this chapter, I stated that your event objects, specifically their
schema representations, are a contract between the producers and consumers of the
Kafka event streaming platform. Schema Registry provides a central repository for
those schemas, enforcing these schema contracts across your organization. Addition-
ally, Schema Registry provides serializers and deserializers, which offer a convenient
way of working with data without writing custom serialization code. 

 Does this mean using Schema Registry is required? No, not at all. Sometimes, you
may not have access to Schema Registry or don’t want to use it. Writing custom serial-
izers and deserializers is easy. Remember, producers and consumers are decoupled
from the (de)serializer implementation; you only provide the class name as a configu-
ration setting. However, it’s good to remember that when you use Schema Registry,
you can use the same schemas across Kafka Streams, Connect, and ksqlDB.

 So, to create your serializer and deserializer, you create classes that implement
the org.apache.kafka.common.serialization.Serializer and org.apache.kafka
.common.serialization.Deserializer interfaces. With the Serializer interface,
there is only one method you must implement: serialize. For the Deserializer, it’s
the deserialize method. Both interfaces have additional default methods (config-
ure, close) you can override if necessary. The following listing shows a section of a
custom serializer using the jackson-databindobjectMapper (see details are omitted
for clarity). 

@Override
public byte[] serialize(String topic, T data) {
    if (data == null) {
        return null;
    }
    try {
        return objectMapper.writeValueAsBytes(data);   
    } catch (JsonProcessingException e) {
        throw new SerializationException(e);
    }
}

Listing 3.43 Serialize method of a custom serializer

Converts the 
given object to 
a byte array
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Here, you call objectMapper.writeValueAsBytes(), which returns a serialized repre-
sentation of the passed-in object. Now let’s look at an example of the deserializing
counterpart (some details are omitted for clarity).

@Override
public T deserialize(String topic, byte[] data) {
    try {
        return objectMapper.readValue(data, objectClass);  
    } catch (IOException e) {
        throw new SerializationException(e);
    }
}

The bbejeck.serializers package contains the serializers and deserializers shown
here and additional ones for Protobuf. You can use these serializers/deserializers in
any examples in this book but remember that they don’t use Schema Registry. Or they
can serve as examples of how to implement your own (de)serializers. 

 In this chapter, we’ve covered how event objects, specifically their schemas, rep-
resent contracts between producers and consumers. We discussed how Schema Reg-
istry stores these schemas and enforces an implied contract across the Kafka
platform. Finally, we covered the supported serialization formats of Avro, Protobuf,
and JSON. In the next chapter, you’ll move up further in the event streaming plat-
form to learn about Kafka clients, the KafkaProducer and KafkaConsumer. If you
think of Kafka as your central nervous system for data, the clients are its sensory
inputs and outputs. 

Summary
 Schemas represent a contract between producers and consumers. Even if you

don’t use explicit schemas, you have an implied one with your domain objects,
so developing a way to enforce this contract between producers and consumers
is critical.

 Schema Registry stores all your schemas, enforcing data governance and pro-
viding versioning and three schema compatibility strategies: backward, forward,
and full. The compatibility strategies offer assurance that the new schema will
work with its immediate predecessor but not necessarily older ones. You must
use backward transitive, forward transitive, and full transitive for full compati-
bility across all versions. Schema Registry provides a convenient REST API for
uploading, viewing, and testing schema compatibility.

 Schema Registry supports three serialization formats: Avro, Protocol Buffers,
and JSON Schema. It also provides integrated serializers and deserializers you
can plug into your KafkaProducer and KafkaConsumer instances for seamless
support for all three supported types. The provided (de)serializers cache sche-

Listing 3.44 Deserialize method of a custom deserializer

Converts the bytes 
back to an object 
specified by the 
objectClass parameter
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mas locally and only fetch them from Schema Registry when they can’t locate a
schema in the cache.

 Using code generation with tools like Avro and Protobuf or open source
plugins supporting JSON Schema helps speed development and eliminate
human error. Plugins that integrate with Gradle and Maven also allow testing
and the uploading of schemas in the development build cycle. 



Kafka clients
This chapter is where the “rubber hits the road.” We take what you’ve learned over
the previous two chapters and apply it here to start building event streaming appli-
cations. We’ll begin by working individually with the producer and consumer cli-
ents to understand how each works.

4.1 Introducing Kafka clients
In their simplest form, clients operate like this: producers send records (in a pro-
duce request) to a broker, the broker stores them in a topic, consumers send a
fetch request, and the broker retrieves records from the topic to fulfill that request
(figure 4.1). When we talk about the Kafka event streaming platform, it’s common

This chapter covers
 Producing records with KafkaProducer

 Understanding message delivery semantics

 Consuming records with KafkaConsumer

 Learning about Kafka’s exactly-once streaming

 Using the Admin API for programmatic topic 
management

 Handling multiple event types in a single topic
88
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to mention producers and consumers. After all, it’s a safe assumption that you pro-
duce data for someone else to consume. But it’s essential to understand that the pro-
ducers and consumers are unaware of each other; there’s no synchronization between
these two clients. 

KafkaProducer has one task: sending records to the broker. The records themselves
contain all the information the broker needs to store them.

 KafkaConsumer, on the other hand, only reads or consumes records from a topic
(figure 4.2). Also, as we mentioned in chapter 1, covering the Kafka broker, the bro-
ker handles the storage of the records. Consuming records does not affect how long
the broker retains them.

In this chapter, you’ll take a KafkaProducer, dive into the essential configurations,
and walk through examples of producing records to the Kafka broker. Learning how
KafkaProducer works is important because that’s the crucial starting point for build-
ing event streaming applications: getting the records into Kafka.

 Next, you’ll learn how to use the KafkaConsumer. Again, we’ll cover the vital config-
uration settings, and from working with some examples, you’ll see how an event

Producer

The producer sends
a batch of records
in a produce
request.

The broker stores
records in a topic.

Figure 4.1 Producers send 
batches of records to Kafka in 
a produce request.

Consumer

The consumer sends a
fetch request to the
broker to retrieve
records.

The broker retrieves
records from a topic.

The broker sends
the records to
the consumer.

Figure 4.2 Consumers send fetch 
requests to consume records from a 
topic, and the broker retrieves those 
records to fulfill the request.
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streaming application works by continually consuming records from the Kafka broker.
You’ve started your event streaming journey by getting your data into Kafka, but when
you start consuming the data, you begin building valuable applications.

 Then, we’ll go into working with the Admin interface. As the name implies, it’s a cli-
ent that allows you to perform administrative functions programmatically.

 From there, you’ll get into more advanced subject matter, such as the idempotent
producer configuration, which guarantees per-partition, exactly-once message delivery,
and the Kafka transnational API for exactly-once delivery across multiple partitions.

 When you complete this chapter, you’ll know how to build event streaming appli-
cations using the KafkaProducer and KafkaConsumer clients. Additionally, you’ll
understand how they work to recognize when you have a good use case for including
them in your application. You should also come away with a good sense of configuring
the clients to ensure your applications are robust and can handle situations when
things don’t go as expected.

 So, with this overview in mind, we will embark on a guided tour of how the clients
do their jobs. First, we’ll discuss the producer, and then we’ll cover the consumer.
Along the way, we’ll take some time going into deeper details, and then we’ll return
and continue with the tour. 

4.2 Producing records with the KafkaProducer
You’ve seen the KafkaProducer in chapter 3 when we covered Schema Registry, but I
didn’t go into how the producer works. Let’s do that now. 

 Say you work on a medium-sized wholesale company’s data ingest team. You get
transaction data delivered via a point-of-sale service, and several different departments
within the company want access to the data for things such as reporting, inventory
control, detecting trends, etc.

 Your task is to build a reliable and fast way of making that information available to
anyone within the company that wants access. The company Vandelay Industries uses
Kafka to handle all of its event streaming needs, and you realize this is your opportu-
nity to get involved. The sales data contains the following fields:

 Product name
 Per-unit price
 Quantity of the order
 The timestamp of the order
 Customer name

At this point in your data pipeline, you don’t need to do anything with the sales data
other than send it into a Kafka topic, which makes it available for anyone in the com-
pany to consume (figure 4.3).

 To ensure everyone is on the same page with the data structure, you’ve modeled
the records with a schema and published it to Schema Registry. All that’s left for you to
do is write the KafkaProducer code to take the sales records and send them to Kafka.
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Pr
The following listing shows what your code looks like. Some details are left out for
clarity. The source code can be found at bbejeck.chapter_4.sales.SalesProducerClient.

try (
Producer<String, ProductTransaction> producer = new KafkaProducer<>(
  producerConfigs)) {  
   while(keepProducing) {
    Collection<ProductTransaction> purchases =
    ➥ salesDataSource.fetch();           
     purchases.forEach(purchase -> {
        ProducerRecord<String, ProductTransaction> producerRecord =
          new ProducerRecord<>(topicName, purchase.getCustomerName(),
              purchase);   
        producer.send(producerRecord,
          (RecordMetadata metadata, Exception exception) -> {     
              if (exception != null) {      
                  LOG.error("Error producing records ", exception);
            } else {
              LOG.info("Produced record at offset
                        ➥ {} with timestamp {}",  
                           metadata.offset(), metadata.timestamp());
              }
          });
      });

Notice KafkaProducer takes a Map of configuration items (In section 4.2.1 we’ll discuss
some of the more critical KafkaProducer configurations). We use a data generator to
simulate the delivery of sales records. You take the list of ProductTransaction objects
and use the Java stream API to map each object into a ProducerRecord object. 

 For each ProducerRecord created, you pass it as a parameter to the KafkaProducer
.send() method. However, the producer does not immediately send the record to the

Listing 4.1 KafkaProducer 

Producer

The producer sends
a batch of records
in a produce
request.

The broker stores
records in a topic.

Figure 4.3 Sending the data 
into a Kafka topic

Creates the KafkaProducer instance using a try-with-resources 
statement so the producer closes automatically when the code exits

The data source 
providing the sales 
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Creates the
oducerRecord

from the
incoming data

Sends the record to the Kafka broker and
provides a lambda for the Callback instance

Logs if an exception occurred 
with the produce request

In the success case, logs the offset and
timestamp of the record stored in the topic
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broker. Instead, it attempts to batch up records. By using batches, the producer makes
fewer requests, which helps with the performance of both the broker and the pro-
ducer client. The KafkaProducer.send() call is asynchronous to allow for the contin-
ual addition of records to a batch. The producer has a separate thread (the I/O
thread) that sends records when the batch is full or when it decides to transmit the
batch (figure 4.4). 

There are two signatures for the send method. The version you use in the code here
accepts a ProducerRecord and Callback objects as parameters. However, since the
Callback interface only contains one method, also known as a functional interface, we
can use a lambda expression instead of a concrete implementation. The producer I/O
thread executes the Callback when the broker acknowledges the record as persisted. 

 The Callback.onCompletion method, again represented here as a lambda, accepts
two parameters, RecordMetadata and Exception. The RecordMetadata object con-
tains metadata of the record the broker has acknowledged. It’s worth noting that if
you set acks=0, the RecordMetadata.offset field will have a value of -1. The offset is
-1 because the producer doesn’t wait for acknowledgment from the broker, so it can’t
report the offset assigned to the record. The exception parameter is non-null if an
error occurred. 

 Since the producer I/O thread executes the callback, it’s best to refrain from
doing any heavy processing, as that would hold up the sending of records. The other
overloaded KafkaProducer.send() method only accepts a ProducerRecord parame-
ter and returns a Future<RecordMetadata>. The Future.get() method blocks until
the broker acknowledges the record (request completion). Note that executing the
get method throws an exception if an error occurs during the send. 

 Generally speaking, it’s better to use the send method with the Callback parame-
ter as it’s a bit cleaner to have the I/O thread handle the results of the send asynchro-
nously versus having to keep track of every Future resulting from the send calls. 

Producer

The producer places
records in a buffer.

Record buffer inside
the producer

In the send call, you pass
a record to the producer.

1 2

3
The producer
sends the batch(es)
on the I/O thread
when the buffer
is full or when it
determines it’s
time to send them.

Figure 4.4 The producer batches records and sends them to the broker when the buffer 
is full or it’s time to send them.
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 At this point, we’ve covered the fundamental behavior of a KafkaProducer, but
before we move on to consuming records, we should take a moment to discuss other
essential subjects involving the producer: configurations, delivery semantics, partition
assignment, and timestamps.

4.2.1 Producer configurations

The following are some important producer configurations:

 bootstrap.servers—One or more host:port configurations specifying a bro-
ker for the producer to connect to. Here, we have a single value because this
code runs against a single broker in development. In a production setting, you
could list every broker in your cluster in a comma-separated list.

 key.serializer—The serializer for converting the key into bytes. In this
example, the key is a String, so we can use the StringSerializer class. The
org.apache.kafka.common.serialization package contains serializers for
String, Integer, Double, etc. You could also use Avro, Protobuf, or JSON
Schema for the key and use the appropriate serializer.

 value.serializer—The serializer for the value. Here, we’re using an object
generated from an Avro schema. Since we’re using Schema Registry, we’ll use
the KafkaAvroSerializer we saw in chapter 3. But the value could also be a
string, integer, etc., and you would use one of the serializers from the org
.apache.kafka.common.serialization package.

 acks—The number of acknowledgments required to consider the produce
request successful. The valid values are 0, 1, and all. The acks configuration is
one of the most important to understand as it directly affects data durability.
Let’s go through the different settings here.
– Zero (acks=0)—Using a value of 0 means the producer will not wait for any

acknowledgment from the broker about persisting the records. The pro-
ducer considers the send successfully immediately after transmitting it to the
broker. You could consider using acks=0 as “fire and forget.” Using this set-
ting has the highest throughput but the lowest data durability guarantee. 

– One (acks=1)—A setting of 1 means the producer waits for notification from
the lead broker for the topic partition that it successfully persisted the record
to its log. But the producer doesn’t wait for acknowledgment from the leader
that any of the followers persisted in the record. While you have a little more
assurance on the record’s durability in this case, it will be lost if the lead bro-
ker fails before the followers replicate the record. 

– All (acks=all)—This setting gives the highest guarantee of data durability.
In this case, the producer waits for acknowledgment from the lead broker
that it successfully persisted the record to its log, and the following in-sync
brokers could also persist the record. This setting has the lowest throughput
but the highest durability guarantees. When using the acks=all setting, it’s



94 CHAPTER 4 Kafka clients
best to set the min.insync.replicas configuration for your topics to a value
higher than the default of 1. For example, with a replication factor of 3, set-
ting min.insyc.replicas=2 means the producer will raise an exception if
there are not enough replicas available for persisting a record. We’ll go into
more detail on this scenario later in this chapter. 

 delivery.timeout.ms—This is an upper bound on the time you want to wait
for a response after calling KafkaProducer.send(). Since Kafka is a distributed
system, failures in delivering records to the broker will occur. But in many cases,
these errors are temporary and hence retryable. For example, the producer
may encounter trouble connecting due to a network partition. But network par-
titions can be a temporary issue, so the producer will retry sending the batch,
and in many cases, the resending of records succeeds. But after a certain point,
you’ll want the producer to stop trying and throw an error, as prolonged con-
nectivity problems mean a problem that needs attention. Note that if the pro-
ducer encounters a fatal error, the producer will throw an exception before this
timeout expires.

 retries—When the producer encounters a nonfatal error, it will retry sending
the record batch. The producer will continue to retry until the delivery.time-
out.ms timeout expires. The default value for retries is INTEGER.MAX_VALUE.
Generally, you should leave the retries configuration at the default value. If you
want to limit the number of retries a producer makes, you should reduce the
value of the delivery.timeout.ms configuration. With errors and retries,
records may arrive out of order on a partition. Consider the producer sends a
batch of records, but an error forces a retry. But in the meantime, the producer
sent a second batch that encountered no errors. The first batch succeeds in the
subsequent retry, but now it’s appended to the topic after the second batch. To
avoid this issue, you can set the configuration max.in.flight.requests.per
.connection=1. Another approach to avoid out-of-order batches is to use the
idempotent producer, which we’ll discuss in section 4.4.1. 

Now that you have learned about the concept of retries and record acknowledgments,
let’s look at message delivery semantics.

4.2.2 Kafka delivery semantics

Kafka provides three different delivery semantic types: at least once, at most once, and
exactly once. Let’s discuss each of them here:

 At least once— With at least once, records are never lost but may be delivered
more than once. From the producer’s perspective, this can happen when a pro-
ducer sends a batch of records to the broker. The broker appends the records
to the topic-partition, but the producer does not receive the acknowledgment
in time. In this case, the producer resends the batch of records. From the con-
sumer’s point of view, you have processed incoming records, but an error occurs
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before the consumer can commit. Your application reprocesses data from the
last committed offset, including records already processed, so there are dupli-
cates. Kafka provides at-least-once delivery by default.

 At most once—Records are successfully delivered but may be lost with an error.
From the producer’s standpoint, enabling acks=0 would be an example of at-
most-once semantics. Since the producer does not wait for acknowledgment as
soon as it sends the records, it has no notion if the broker received or appended
them to the topic. From the consumer perspective, it commits the offsets before
processing any records, so in the event of an error, it will not start reprocess-
ing missed records as the consumer has already committed the offsets. To
achieve at most once, producers set acks=0, and consumers commit offsets
before processing.

 Exactly once—With exactly-once semantics, records are neither delivered more
than once nor lost. Kafka uses transactions to achieve exactly-once semantics. If
Kafka aborts a transaction, the consumer effectively ignores the aborted data,
its internal position continues to advance, and the stored offsets aren’t visible to
any consumer configured with read_committed.

Both of these concepts are critical elements of Kafka’s design. Partitions determine
the level of parallelism and allow Kafka to distribute the load of a topic’s records to
multiple brokers in a cluster. The broker uses timestamps to determine which log seg-
ments it will delete. In Kafka Streams, timestamps drive records’ progress through a
topology (we’ll return to timestamps in chapter 9). 

4.2.3 Partition assignment

When it comes to assigning a partition to a record, there are four possibilities:

1 You can provide a valid partition number.
2 If you don’t give the partition number, but there is a key, the producer sets the

partition number by taking the hash of the key modulo the number of partitions.
3 Without providing a partition number or key, KafkaProducer sets the partition

by alternating the partition numbers for the topic. 

The approach to assigning partitions without keys has changed somewhat over time.
Before Kafka 2.4, the default partitioner assigned partitions on a round-robin basis.
That meant the producer assigned a partition to a record; it would increment the par-
tition number for the next record. This round-robin approach sends multiple, smaller
batches to the broker. This approach causes more load on the broker due to more
requests. Figure 4.5 will help clarify what is going on.

 But now, when you don’t provide a key or partition for the record, the partitioner
assigns the partition per batch. When the producer flushes its buffer and sends
records to the broker, the batch is for a single partition, resulting in a single request.
Let’s take a look at figure 4.6 to visualize how this works.
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After sending the batch, the partitioner randomly selects a partition and assigns it to
the next batch. Over time, there should still be an even distribution of records across
all partitions, but it’s done one batch at a time.

 Sometimes, the provided partitioners may not suit your requirements, and you’ll
need finer-grained control over partition assignment. For those cases, you can write a
custom partitioner. 

4.2.4 Writing a custom partitioner

Let’s revisit the producer application from section 4.1. The key is the customer’s
name, but some orders don’t follow the typical process and end up with a customer
name of CUSTOM. You’d prefer to restrict those orders to a single partition 0 and have
all other orders on partition 1 or higher. So, in this case, you’ll need to write a custom
partitioner that can look at the key and return the appropriate partition number. 

Producer
Batches assigned
to partitions

0

1

2

The producer places records in a batch
for partitions in the following order: 0, 1,
and 2. Then the order starts
over again at 0.

Figure 4.5 Round-robin partition assignment

Producer

0

Once the producer sends the batch,
all records will go into a new batch for
another partition selected at random.
After the producer sends the batch,
the cycle repeats.

1

2

?

?

The producer places records in a
batch for a partition chosen at random.

Figure 4.6 Sticky partition assignment
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 The following listing shows that a custom partitioner does just that. The Custom-
OrderPartitioner, from src/main/java/bbejeck/chapter_4/sales/CustomOrder-
Partitioner.java, examines the key to determine which partition to use (some details
are omitted for clarity).

public class CustomOrderPartitioner implements Partitioner {

@Override
public int partition(String topic,
                     Object key,
                     byte[] keyBytes,
                     Object value,
                     byte[] valueBytes,
                     Cluster cluster) {

    Objects.requireNonNull(key, "Key can't be null");
    int numPartitions = cluster.partitionCountForTopic(topic);  
    String strKey = (String) key;
    int partition;

    if (strKey.equals("CUSTOM")) {
        partition = 0;                 
    } else {
        byte[] bytes = strKey.getBytes(StandardCharsets.UTF_8);
        partition = Utils.toPositive(Utils.murmur2(bytes)) %
                                       (numPartitions - 1) + 1;  
    }
    return partition;
  }
}

To create your partitioner, you implement the Partitioner interface, which has three
methods: partition, configure, and close. I’m only showing the partition method
here as the other two don’t do anything in this implementation. The logic is straight-
forward: if the customer name equates to “CUSTOM”, return zero for the partition.
Otherwise, you determine the partition as usual, with a slight twist. First, we subtract
one from the number of candidate partitions since the 0 partition is reserved. Then,
we shift the partition number by 1, which ensures we always return 1 or greater for the
non-custom order case. 

NOTE This example does not represent a typical use case and is presented
only to demonstrate how you can provide a custom partitioner. In most cases,
it’s best to go with one of the provided ones.

You’ve just seen how to construct a custom partitioner. Next, we’ll wire it up with our
producer. 

Listing 4.2 CustomOrderPartitioner custom partitioner

Retrieves the number
of partitions for

the topic

If the name of the 
customer is CUSTOM, 
returns 0

Determines the partition to use in
the noncustom order case
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4.2.5 Specifying a custom partitioner

Now that you’ve written a custom partitioner, let’s configure the producer to use it
instead of the default partitioner. You specify a different partitioner when configuring
the Kafka producer:

producerConfigs.put(ProducerConfig.PARTITIONER_CLASS_CONFIG,
 CustomOrderPartitioner.class);

The bbejeck.chapter_4.sales.SalesProducerClient uses the CustomOrderPartitioner,
but you can comment-out the line if you don’t want to use it. You should note that
since the partitioner config is a producer setting, you must configure each one you
want to use the custom partitioner. 

4.2.6 Timestamps

The ProducerRecord object contains a timestamp field of type Long. If you don’t pro-
vide a timestamp, the KafkaProducer adds one to the record, which is the current
time of the system the producer is running on. Timestamps are an essential concept
in Kafka. The broker uses them to determine when to delete records by taking the
oldest timestamp in a segment and comparing it to the current time. The broker
removes the segment if the difference exceeds the configured retention time. Kafka
Streams and ksqlDB also rely heavily on timestamps, but I’ll defer those discussions
until we get to their respective chapters. 

 Kafka may use two possible timestamps depending on the configuration of the
topic. In Kafka, topics have a configuration, message.timestamp.type, which can either
be CreateTime or LogAppendTime. A configuration of CreatTime means the broker
stores the record with the timestamp provided by the producer. Suppose you config-
ure your topic with LogAppendTime. In that case, the broker overwrites the timestamp
in the record with its current wall-clock (i.e., system) time when the broker appends
the record in the topic. In practice, the difference between these timestamps should
be small. Another consideration is that you can embed the event’s timestamp in the
record value payload when creating it. 

 This wraps up our discussion on the producer-related issues. Next, we’ll move on
to the mirror image of producing records to Kafka, consuming records. 

4.3 Consuming records with the KafkaConsumer
So you’re back on the job at Vandelay Industries, and you now have a new task. Your
producer application is up and running, happily pushing sales records into a topic.
But now you’re asked to develop a KafkaConsumer application to serve as a model for
consuming records from a Kafka topic. 

 The KafkaConsumer sends a fetch request to the broker to retrieve records from its
subscribed topics (figure 4.7). The consumer makes a poll call to get the records. But
each time the consumer polls, it doesn’t necessarily result in the broker fetching
records. Instead, it could be retrieving records cached by a previous call.
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S
t

NOTE Producer and consumer clients are available in other programming
languages, but in this book, we’ll focus on the Java clients available in the
Apache Kafka distribution. To see a list of clients available in other languages
check out take a look at this resource: http://mng.bz/Y7qK.

Let’s get started by looking at the code for creating a KafkaConsumer instance. Some
details are left out for clarity.

try (
  final Consumer<String, ProductTransaction> consumer = new KafkaConsumer<>(
    consumerConfigs)) {           
    consumer.subscribe(topicNames);   
    while (keepConsuming) {
        ConsumerRecords<String, ProductTransaction> consumerRecords =
          consumer.poll(Duration.ofSeconds(5));     
        consumerRecords.forEach(record -> {             
            ProductTransaction pt = record.value();
            LOG.info("Sale for {} with product {} for a total sale of {}",
                    record.key(),
                    pt.getProductName(),
                    pt.getQuantity() * pt.getPrice());
        });
    }
}

In this code example, you’re creating a KafkaConsumer, again using the try-with-resources
statement. After subscribing to a topic or topics, you begin processing records returned
by the KafkaConsumer.poll method. When the poll call returns records, you start
processing them. In this example case, we’re simply logging out the details of the sales
transactions.

TIP Whenever using a KafkaProducer or KafkaConsumer, you must close
them to ensure you clean up all the threads and socket connections. The try-
with-resources (http://mng.bz/GZxR) in Java ensures that resources created

Listing 4.3 KafkaConsumer code found in bbejeck.chapter_4.sales.SalesConsumerClient

Consumer

The consumer sends a
fetch request to the
broker to retrieve
records.

The broker retrieves
records from a topic.

The broker sends
the records to
the consumer.

Figure 4.7 Consumers send fetch 
requests to consume records from 
a topic, and the broker retrieves 
those records to fulfill the request.

Creates the new 
consumer instanceubscribes

o topic(s)

Polls for
records

Does some processing
with each of the

returned records

http://mng.bz/Y7qK
http://mng.bz/GZxR
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in the try portion are closed at the end of the statement. Using the try-with-
resources statement is a good practice as it’s easy to overlook adding a close
call on either a producer or a consumer.

You’ll notice that just like with the producer, you create a Map of configurations and
pass them as a parameter to the constructor. The following are some of the more
prominent ones:

 bootstrap.servers—One or more host:port configurations specifying a bro-
ker for the consumer to connect to. We have a single value, but this could be a
comma-separated list.

 max.poll.interval.ms—The maximum time a consumer can take between
calls to KafkaConsumer.poll(); otherwise, the consumer is considered nonac-
tive and triggers a rebalance. We’ll talk more about the consumer group coordi-
nator and relabances in this section.

 group.id—An arbitrary string value used to associate individual consumers as
part of the same consumer group. Kafka uses the concept of a consumer group
to map multiple consumers logically as one consumer.

 enable.auto.commit—A Boolean flag that sets whether the consumer will auto-
matically commit offsets. If you put this to false, your application code must
manually commit the offsets of records you considered successfully processed.

 auto.commit.interval.ms—The time interval for automatically committing
offsets.

 auto.offset.reset—When a consumer starts, it will resume consuming from
the last committed offset. If offsets aren’t available, this configuration speci-
fies where to begin consuming records, either the earliest or latest available
offset. The latest means the offset of the next record that arrives after the con-
sumer starts.

 key.deserializer.class—The class name of the deserializer the consumer
uses to convert record key bytes into the expected object type for the key.

 value.deserializer.class—The class name of the deserializer the consumer
uses to convert record value bytes into the expected object type for the value.
Here, we’re using the provided KafkaAvroDeserializer for the value, which
requires the schema.registry.url configuration we have in our configuration.

The code we use in our first consumer application is simple, but that’s not the main
point. Your business logic (i.e., how you handle processing) will be different on a case-
by-case basis.

 It’s more important to grasp how the KafkaConsumer works and the implications of
the different configurations. With this understanding, you’ll be better able to know
how to write the code to perform the desired operations on the consumed records.
So, as we did in the producer example, we will detour from our narrative and go a lit-
tle deeper into the implications of these different consumer configurations.
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4.3.1 The poll interval

Let’s first discuss the role of max.poll.interval.ms. It will be helpful to look at fig-
ure 4.8 to see the poll interval configuration in action to get a full understanding,

In the illustration here, the consumer processing loop starts with a call to KafkaCon-
sumer.poll(Duration.ofSeconds(5)); the time passed to the poll(Duration) call is
the maximum time the consumer waits for new records, in this case, 5 seconds. When
the poll(Duration) call returns, if any records are present, the for loop over the
ConsumerRecords executes your code over each one. Had no records been returned,
the outer while loop goes back to the top for another poll(Duration) call.

 Going through this illustration, iterating over all the records and execution for
each record must be completed before the max.poll.interval.ms time elapses. By
default, this value is 5 minutes, so if your processing takes longer, that individual con-
sumer is considered dead, and a rebalance ensues. I know I’ve mentioned a few new
terms in group coordinator and rebalancing; we’ll cover them in the next section
when we look at the group.id configuration.

 If your processing takes longer than the max.poll.interval.ms, you have a couple
of options. The first approach would be to validate what you’re doing when process-
ing the records and look for ways to speed up the processing. If you find no changes
to make to your code, the next step could be to reduce the maximum number of
records the consumer retrieves from a poll call. You can do this by setting the
max.poll.records configuration to a setting less than the default 500. I don’t have
any recommendations; you’ll have to experiment to determine a good number. 

The consumer calls poll
and retrieves a batch of records.

The process loop

The consumer has 5 minutes
(the default time) to fully process
records and return to make
another poll call.

Figure 4.8 The max.poll.interval.ms configuration specifies how 
long a consumer may take between calls to KafkaConsumer.poll() 
before the consumer is considered inactive and removed from the 
consumer group.
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4.3.2 The group id configuration

The group.id configuration takes us into a deeper conversation about consumer
groups in Kafka. Kafka consumers use a group.id configuration, which Kafka uses to
map all consumers with the same group.id into the same consumer group. A con-
sumer group is a way to treat all group members as one consumer logically. Figure 4.9
illustrates how group membership works. 

So, going off figure 4.9, there is one topic with six partitions. There are three consum-
ers in the group, so each consumer has an assignment of two partitions. Kafka guaran-
tees that only a single consumer maintains an assignment for a given topic partition.
To have more than one consumer assigned to a single topic partition would lead to
undefined behavior.

 Life with distributed systems means that failures aren’t to be avoided but embraced
with sound practices to deal with them as they occur. So what happens with our sce-
nario here if one of the consumers in the group fails, whether from an exception or
missing a required timeout, as we discussed with the max.poll.interval.ms timeout?
The answer is the Kafka rebalance protocol, depicted in figure 4.10.

 What we see in figure 4.10 is that consumer 2 fails and can no longer function. So
rebalancing takes the topic partitions owned by consumer 2 and reassigns one topic
partition to each of the other active consumers in the group. If consumer 2 becomes
active again (or another consumer joins the group), another rebalance occurs and
reassigns topic partitions from the active members. Each group member will be
responsible for two topic-partitions again.

NOTE The number of partitions limits the number of active consumers you
can have. From our example here, you can start up to six consumers in the

Consumer 1 Consumer 2 Consumer 3

COnsumer GroupId "data.group"

T data"opic"some _

0, 1 2, 3 4, 5

Partition 0

Partition 1

Partition 2

Partition 3

Partition 4

Partition 5

Figure 4.9 Consumer groups 
allow the assignment of topic 
partitions across multiple 
consumers.
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group, but any more beyond six will be idle. Also, note that different groups
don’t affect each other; each is treated independently.

So far, I’ve discussed how not making a poll() call within the specified timeout will
cause a consumer to drop out of the group, triggering a rebalance and assigning its
topic partition assignments to other consumers. But if you recall, the default setting
for max.poll.interval.ms is 5 minutes. Does this mean it takes up to 5 minutes for
the potentially dead consumer to get removed from the group and its topic partitions
reassigned? The answer is no. Let’s look at the poll interval illustration again, but we’ll
update it to reflect session timeouts (figure 4.11).

Consumer 1 Consumer 2 Consumer 3

Topic"some data"_

0, 1, 2 3, 4, 5

Consumer 2 fails and drops out of the group.  Its
partitions are reassigned to consumer 1 and consumer 3.

Partition 0

Partition 1

Partition 2

Partition 3

Partition 4

Partition 5

Figure 4.10 The Kafka rebalance 
protocol reassigns topic partitions 
from failed consumers to currently 
active ones.

The consumer sends heartbeat
signals every 10 seconds, so a
a failed consumer gets detected

sooner than waiting for a missed
poll call.

The process loop

Consumer

"I'm good" every 10 seconds

Figure 4.11 In addition to needing to call poll within the timeout, a consumer must send a heartbeat 
every 10 seconds.
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There is another configuration timeout, session.timeout.ms, with a default value of
45 seconds. Each KafkaConsumer runs a separate thread for sending heartbeats indi-
cating it’s still alive. Should a consumer fail to send a heartbeat within 45 seconds, it’s
marked as dead and removed from the group, triggering a rebalance. This two-level
approach for confirming consumer liveliness is essential to ensure all consumers are
functioning. It also allows the reassignment of their topic partitions to other group
members to ensure continued processing should one of them fail.

 Let’s discuss the new terms group coordinator, rebalancing, and group leader I just
spoke about to give you a clear picture of how group membership works. Let’s start
with a visual representation of how these parts are tied together (figure 4.12).

The group coordinator is a broker handling membership for a subset of all available
consumer groups. No single broker will act as the group coordinator; the responsibil-
ity is spread among the different brokers. The group coordinator monitors the mem-
bership of a consumer group via requests to join a group or when a member fails to
communicate (either a poll or heartbeat) within the given timeouts.

 When the group coordinator detects a membership change, it triggers a rebalance
for the existing members. A rebalance is having all group members rejoin so that group
resources (topic partitions) can be evenly distributed to the other members. When a
new member joins, some topic partitions are removed from some or all existing group
members and assigned to the new member. The opposite process occurs when an exist-
ing member leaves: its topic partitions are reassigned to the other active members.

 The rebalance process is pretty straightforward, but it comes at a cost of time lost
waiting for the rebalance process to complete, known as a “stop-the-world” or an eager
rebalance. But with the release of Kafka 2.4, you can use a new rebalance protocol
called cooperative rebalancing.

 Let’s look at both protocols, beginning with eager rebalancing.

Consumer 1 Consumer 2 Consumer 3

Broker

All three consumers
communicate to the broker.

Group coordinator
for this consumer group

But the group coordinator only
communicates back to the
group leader.

Figure 4.12 Group coordinator is a broker assigned to track a subset of consumer groups, 
and the group leader is a consumer communicating with the group coordinator.
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EAGER REBALANCING

When the group coordinator detects a change in membership, it triggers a rebalance.
This is true of both rebalance protocols we’re going to discuss. 

 Once the rebalancing process starts, each group member gives up ownership of all
its assigned topic partitions. Then, they send a JoinGroup request to the controller.
Part of the request includes the topic partitions that the consumer is interested in, the
ones they just relinquished control of. As a consequence of the consumers giving up
their topic partitions, processing stops (figure 4.13).

The controller collects all of the topic partition information from the group and
sends out the JoinGroup response, but the group leader receives all of the included
topic partition information.

NOTE Remember from our discussion of the broker in chapter 2: all actions
are a request/response process.

The group leader takes this information and creates topic partition assignments for all
members of the group. Then, the group leader sends assignment information to the
coordinator in a SyncGroup request. Note that the other members of the group also
send SyncGroup requests but don’t include any assignment information. After the
group controller receives the assignment information from the leader, all members of
the group get their new assignment via the SyncGroup response.

 Now, with their topic partition assignments, all group members begin processing
again. Again, note that no processing occurred when group members sent the Join-
Group request until the SyncGroup response arrived with their assignments. This gap

Consumer A

1 2

Consumer B
3

Consumer C
Joins group

All partitions revoked

Group coordinator Synchronization
barrier

Partitions assigned

1

3

2

Rebalance period

Figure 4.13 Rebalancing with the eager or “stop-the-world” approach. Processing occurs on 
all partition stops until reassigned, but most of the partitions end up with the original consumer.
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in processing is known as a synchronization barrier and is required as it’s vital to
ensure that each topic partition only has one consumer owner. If a topic partition had
multiple owners, undefined behavior would result.

NOTE During this entire process, consumer clients don’t communicate with
each other. All the consumer group members communicate only with the
group coordinator. Additionally, only one group member, the leader, sets the
topic partition assignments and sends them to the coordinator.

While the eager rebalance protocol redistributes resources and ensures only one con-
sumer owns a given topic-partition, it comes with downtime as each consumer is idle
from the initial JoinGroup request and the SyncGroup response. This cost might be
negligible for smaller applications, but for applications with several consumers and a
large number of topic partitions, the cost of downtime increases. Fortunately, there’s
another rebalancing approach that aims to remedy this situation. 

INCREMENTAL COOPERATIVE REBALANCING

Introduced in the 2.4 Kafka release, the incremental cooperative rebalance protocol
takes the approach that rebalances don’t need to be so expensive. The incremental
cooperative rebalancing approach takes a different view of rebalancing:

1 Consumers don’t automatically give up ownership of all their topic partitions.
2 The group leader identifies specific topic partitions requiring new ownership.
3 Processing continues for topic partitions that are not changing ownership.

The last point is the big win with the cooperative rebalancing approach. Instead of the
stop-the-world approach, only those moving topic partitions will experience a pause in
processing (figure 4.14). In other words, the synchronization barrier is much smaller.

 I’m skipping over some details, so let’s walk through the incremental cooperative
rebalancing protocol process. Like before, when the group controller detects a
change in group membership, it triggers a rebalance. Each group member encodes
their current topic-partition subscriptions in a JoinGroup request, but each member
retains ownership for now.

 The group coordinator assembles all the subscription information. In the Join-
Group response, the group leader looks at the assignments and determines which
topic-partitions need to migrate to new ownership. The leader removes any topic par-
titions requiring new ownership from the assignments and sends the updated sub-
scriptions to the coordinator via a SyncGroup request. Again, each group member
sends a SyncGroup request, but only the leader’s request contains the subscription
information.

NOTE All group members receive a JoinGroup response, but only the
response to the group leader contains the assignment information. Likewise,
each group member issues a SyncGroup request, but only the leader encodes
a new assignment. In the SyncGroup response, all members receive their pos-
sible updated assignment.
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The group members take the SyncGroup response and potentially calculate a new
assignment, either revoking topic partitions not included or adding ones in the new
assignment but not the previous one. Topic partitions included in both the old and
new assignments require no action.

 Members then trigger a second rebalance, but only topic-partitions changing
ownership are included. This second rebalance acts as the synchronization barrier
as in the eager approach, but since it only comprises topic partitions receiving new
owners, it is much smaller. Additionally, nonmoving topic partitions continue to
process records!

 After discussing the different rebalance approaches, we should cover some broader
information about the available partition assignment strategies and how you apply
them. 

4.3.3 Applying partition assignment strategies

We’ve already discussed that a broker serves as a group coordinator for some subset of
consumer groups. Since two different consumer groups could have differing ideas
of distributing resources (topic partitions), the responsibility for which approach to
use is entirely on the client side. 

NOTE For Kafka Connect and Kafka Streams, which are abstractions built on
top of Kafka producers and consumers, use cooperative rebalance protocols,
and I recommend staying with the default settings. This discussion about

Consumer A
1 2

Consumer B
3

Consumer C
Joins group

Group coordinator Synchronization
barrier Partitions assigned

1

3

2

Rebalance one
Partition 2 revoked

Rebalance two

Partition 2 assigned

Processing for partitions
1 and 3 never stops during

either rebalance.

1

Figure 4.14 Rebalancing with cooperative approach processing continues and only stops for partitions marked 
for reassignment.
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partitioners is to inform you of what’s available for applications directly using
a KafkaConsumer.

To choose the partition strategy you want the KafkaConsumer instances in a group to
use, you set the partition.assignment.strategy by providing a list of supported par-
tition assignment strategies. All of the available petitioners implement the Consumer-
PartitionAssignor interface. Here’s a list of the available assignors with a brief
description of the functionality each one provides:

 RangeAssignor—The default setting. RangeAssignor uses an algorithm to sort
the partitions in numerical order and assigns them to consumers by dividing
the number of available partitions by the number of consumers. This strategy
gives partitions to consumers in lexicographical order.

 RoundRobinAssignor—Takes all available partitions and assigns a partition to
each available member of the group in a round-robin manner.

 StickyAssignor—Attempts to assign partitions as balanced as possible. Addi-
tionally, StickyAssignor attempts to preserve existing assignments as much
as possible during a rebalance. StickyAssignor follows the eager rebalancing
protocol.

 CooperativeStickyAssignor—Follows the same assignment algorithm as
StickyAssignor. The difference is that CooperativeStickyAssignor uses the
cooperative rebalance protocol.

While it’s difficult to provide concrete advice as each use case requires careful analysis
of its unique needs, in general, for newer applications, one should favor using the
CooperativeStickyAssignor for the reasons outlined in the section on incremental
cooperative rebalancing.

TIP If you are upgrading from a version of Kafka 2.3 or earlier, you need to
follow a specific upgrade path found in the 2.4 upgrade documentation
(https://kafka.apache.org/documentation/#upgrade_240_notable) to upgrade
to the cooperative rebalance protocol safely.

We’ve concluded our coverage of consumer groups and how the rebalance protocol
works. Next, we’ll cover a different configuration, static membership, where there’s
no initial rebalance when a consumer leaves the group. 

4.3.4 Static membership

In the previous section, you learned that when a consumer instance shuts down, it
sends a leave group request to the group controller. Or if it’s considered unresponsive
by the controller, it gets removed from the consumer group. Either way, the result is
the same: the controller triggers a rebalance to reassign resources (topic partitions) to
the remaining group members. 

 While this protocol is what you want to keep your applications robust, there are
some situations where you’d prefer slightly different behavior. For example, let’s say

https://kafka.apache.org/documentation/#upgrade_240_notable
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you have several consumer applications deployed. You might do a rolling upgrade or
restart whenever you need to update the applications (figure 4.15).

You’ll stop instance 1, upgrade and restart it, and then move on to instance number 2
and continue until you’ve updated every application. By doing a rolling upgrade, you
don’t lose nearly as much processing time if you shut down every application simulta-
neously. But this rolling upgrade triggers two rebalances for every instance: one when
the application shuts down and another when it starts back up. Or consider a cloud
environment where an application node can drop off at any moment only to have it
back up and running once its failure is detected.

 Even with the improvements brought by cooperative rebalancing, it would be advan-
tageous not to have a rebalance triggered automatically for these transient actions. The
concept of static membership was introduced in the 2.3 version of Apache Kafka.
We’ll use the illustration in figure 4.16 to discuss how static membership works.

 At a high level, with static membership, you set a unique ID in the consumer con-
figuration, group.instance.id. The consumer provides this ID to the controller when
it joins a group, and the controller stores this unique group ID. When a consumer
leaves the group, it does not send a leave group request. When it rejoins, it presents this
unique membership ID to the controller. The controller looks it up and returns the
original assignment to this consumer without rebalancing! The tradeoff for using static
membership is that you’ll need to increase the session.timeout.ms configuration to a
value higher than the default of 10 seconds, as once a session timeout occurs, the con-
troller kicks the consumer out of the group and triggers a rebalance.

 Your value should be long enough to account for transient unavailability and not
trigger a rebalance but not so long that an actual failure gets handled correctly with a
rebalance. So, if you can sustain 10 minutes of partial unavailability, set the session
timeout to 8 minutes. While static membership can be a good option for those run-
ning KafkaConsumer applications in a cloud environment, it’s essential to consider
the performance implications before opting to use it. Note that you must have Kafka
brokers and clients on version 2.3.0 or higher to take advantage of static membership.

In a rolling upgrade, each application is shut
down upgraded and then restarted.

1 2 3

Each shutdown sends a "leave group" request;
then, restarting issues a "join group" request.
So each restart results in two rebalances for
all instances in the group.

Figure 4.15 Rolling upgrades 
trigger multiple relabances.
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Next, we’ll cover a crucial subject committing the offsets of messages when using
KafkaConsumer. 

4.3.5 Committing offsets

In chapter 2, we discussed how the broker assigns a number to incoming records,
called an offset. The broker increments the offset by one for each incoming record.
Offsets are vital because they identify a record’s logical position in a topic. KafkaCon-
sumer uses offsets to know where it last consumed a record. For example, if a con-
sumer retrieves a batch of records with offsets from 10 to 20, the starting offset of the
next batch of records the consumer wants to read starts at offset 21. 

 To ensure the consumer continues to progress across restarts or failures, it needs
to periodically commit the offset of the last record it has successfully processed. Kafka
consumers provide a mechanism for automatically committing offsets. You enable
automatic offset commits by setting the enable.auto.commit configuration to true.
This configuration is turned on by default, but I’ve listed it here to discuss how auto-
matic commits work. Also, we’ll want to discuss the concept of a consumer’s position
versus its latest committed offset. A related configuration, auto.commit.interval.ms,
specifies how much time needs to elapse before the consumer should commit offsets.
It is based on the system time of the consumer.

 But first, let’s show how automatic commits work (figure 4.17).
 Following figure 4.17, the consumer retrieves a batch of records from the poll

(Duration) call. Next, the code takes the ConsumerRecords, iterates over them, and

Partitions
0, 1, 2

Partitions
3, 4, 5

Partitions
0, 1, 2

Partitions
3, 4, 5

Partitions
0, 1, 2

Partitions
3, 4, 5

Original assignment Consumer B drops out
but doesn't send a leave
group request - no rebalance.

Consumer
A

Consumer
B

Consumer
A

Consumer
A

Consumer
B

Consumer
B

Consumer B rejoins before
session timeout and receives
its original assignment back.

1 2 3

Figure 4.16 Static members don’t issue leave group requests when dropping out of a group, and a static ID 
allows the controller to remember them.
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does some processing. After that, the code returns to the top of the poll loop and
attempts to retrieve more records. But before retrieving records, if the consumer has
auto-commit enabled and the amount of time elapsed since the last auto-commit
check is greater than the auto.commit.interval.ms interval, the consumer commits
the offsets of the records from the previous batch. By committing the offsets, we are
marking these records as consumed, and under normal conditions, the consumer
won’t process these records again. I’ll describe what I mean by this statement later.

 What does it mean to commit offsets? Kafka maintains an internal topic named
__consumer_offsets, that stores the committed offsets for consumers. When we say a
consumer commits, it’s not storing the offsets for each record; it’s the highest offset
per partition plus one.

 For example, in figure 4.17, let’s say the records returned in the batch contained
offsets 0–4. So when the consumer commits, it will be offset 5 (figure 4.18).

 So, the committed position is the offset successfully processed (plus one), indicat-
ing the starting record for the next batch it will retrieve. In figure 4.18, it’s 5. Should
the consumer in this example fail or you restart the application, the consumer would
consume records starting at offset 5 again since it couldn’t commit before the failure
or restart.

 Consuming from the last committed offset means you are guaranteed not to miss
processing a record due to errors or application restarts. But it also means that you
may process a record more than once (figure 4.19).

 Suppose you processed some of the records with offsets larger than the latest one
committed, but your consumer failed to commit for whatever reason. In that case,
when you resume processing, you start with records from the committed offset, so

Consumer

The consumer retrieves a
batch of records (offsets
0-4) in a poll call.

The process loop completes,
and the consumer makes
another poll call.

12

3 The consumer commits records
offset 5 (highest offset in batch + 1)

4

The consumer retrieves another
batch starting at offset 5, and
the cycle repeats.

Figure 4.17 With automatic commits enabled when returning to the top of the poll loop, the 
consumer commits the highest offset +1 of the previous batch if the auto-commit interval has passed.
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you’ll reprocess some of the records. This potential for reprocessing is known as “at least
once.” We covered at-least-once delivery in the delivery semantics in section 4.2.2.

 To avoid reprocessing records, you could manually commit offsets immediately
after retrieving a batch of records, giving you at-most-once delivery. But you risk losing
some records if your consumer encounters an error after committing and before it
can process the records.

0 1 2 3 4 5 6 7 8 9 10

The first batch of records
contained offsets 0-4, so
the consumer commits 5.

11

The next batch of records
covers offsets 5-10.

Assuming the previous batch
is successfully processed, the
next committed offset will be 11.

1

2

3

Figure 4.18 A consumer’s committed position is the largest offset it has consumed so far, 
plus one.

0 1 2 3 4 5 6 7 8 9 10 11

Offsets 0-4 are successfully processed,
so the last committed offset is 5.

The consumer retrieves a batch with
offsets 5-10; the application has
processed the records, but before the
next commit, it shuts down

1

2

When the application starts
back up, since the last committed
offset is 5, records with offsets
5-10 get processed again.

3

Figure 4.19 Restarting a consumer after processing without a commit means reprocessing 
some records.
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COMMITTING CONSIDERATIONS

When enabling auto-commit with a Kafka consumer, you must ensure you’ve fully pro-
cessed all the retrieved records before the code returns to the top of the poll loop. In
practice, this should present no issue, assuming you are working with your records
synchronously, meaning your code waits for the completion of processing of each
record. However, suppose you were to hand off records to another thread for asyn-
chronous processing or set the records aside for later processing. In that case, you also
run the risk of not processing all consumed records before you commit (figure 4.20).
Let me explain how this could happen. 

When you hand off the records to an asynchronous process, the code in your poll
loop won’t wait for the successful processing of each record. When your application
calls the poll() method again, it commits the current position—that is, the highest
offset plus one for each topic-partition consumed in the previous batch. But your
async process may not complete working with all the records up to the highest offset
at the time of the commit. Suppose your consumer application experienced a failure
or a shutdown for any reason when it resumes processing. In that case, it will start
from the last committed offset, which skips over the unprocessed records in the previ-
ous run of your application.

 To avoid prematurely/maturely committing records before you consider them
fully processed, you’ll want to turn off auto-commits by setting enable.auto.commit
to false. But why would you need to use asynchronous processing requiring manual
committing? When you consume records, you do some processing that takes a long
time (up to 1 second) to process each record. Your topic has a high traffic volume, so
you want to stay caught up. You decide that as soon as you consume a batch of records,
you’ll hand them off to an async process so the consumer can immediately return to
the poll call to retrieve the next batch.

Each poll call commits and advances
the consumer's position.

Code process loop

Async process

The process loop
hands records over

to some async
code (code running in
separate thread).

Since the code
processing the records is async,
the process loop returns to the

top, and the consumer
executes another poll call, committing
the records in the previous batch and

advancing the consumer's
position

Figure 4.20 Asynchronous processing with auto-committing can lead to potentially lost records.
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 Using an approach like this is called pipelining. But you must ensure you only commit
the offsets for successfully processed records. This means turning off auto-committing
and creating a way to only commit records your application considers fully processed.
The following example code shows one example approach you could take. Note that
I’m only showing the key details here, and you should consult the source code to see
the entire example (bbejeck.chapter_4.pipelining.PipliningConsumerClient).

ConsumerRecords<String, ProductTransaction> consumerRecords = consumer.poll(
  Duration.ofSeconds(5));
if (!consumerRecords.isEmpty()) {
    recordProcessor.processRecords(consumerRecords);        
    Map<TopicPartition, OffsetAndMetadata> offsetsAndMetadata =
      recordProcessor.getOffsets();                    
    if (offsetsAndMetadata != null) {
        consumer.commitSync(offsetsAndMetadata);  
   }

The key point with this consumer code is that the RecordProcessor.processRe-
cords() call returns immediately, so the next call to RecordProcessor.getOffsets()
returns offsets from a previous batch of records that are fully processed. What I want
to emphasize here is how the code hands over new records for processing and then
collects the offsets of records already fully processed for committing. Let’s take a look
at the processor code to see this is done. For the full code, see bbejeck.chap-
ter_4.piplining.ConcurrentRecordProcessor.

Map<TopicPartition, OffsetAndMetadata> offsets = new HashMap<>();   
  consumerRecords.partitions().forEach(topicPartition -> {    
        List<ConsumerRecord<String,ProductTransaction>> topicPartitionRecords =
    consumerRecords.records(topicPartition);     
        topicPartitionRecords.forEach(this::doProcessRecord);   
        long lastOffset = topicPartitionRecords.get(
    topicPartitionRecords.size() - 1).offset();   
        offsets.put(topicPartition, new OffsetAndMetadata(lastOffset + 1));  
    });
    ....
    offsetQueue.offer(offsets);   

Listing 4.4 Consumer code

Listing 4.5 Asynchronous processor code

After you’ve retrieved a batch of records, you hand 
off the batch of records to the async processor.

Checks for offsets 
of completed 
records

If the Map is not empty, you commit the
offsets of the records processed so far.

Creates the Map for collecting 
the offset for committing Iterates over the TopicPartition objects

Gets records by TopicPartition for processing

Does the actual work on the consumed records

Gets the last offset for all records of a given TopicPartition

Stores the offset to
commit for the
TopicPartitionPuts the entire 

Map of offsets in 
a queue
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The takeaway with the code here is that by iterating over records using TopicPartition,
it’s easy to create the map entry for the offsets to commit. Once you’ve iterated over
all the records in the list, you only need to get the last offset. You, the observant
reader, might ask yourself, “Why does the code add 1 to the last offset?” When com-
mitting offsets, it’s always the offset of the next record you’ll retrieve. For example, if
the last offset is 5, you want to commit 6. Since you’ve already consumed offsets 0–5,
you only want to consume records from offset 6 forward. 

 Then, you use the TopicPartition from the top of the loop as the key and the
OffsetAndMetadata object as the value. When the consumer retrieves the offsets from
the queue, it’s safe to commit those offsets as the application has fully processed the
records. The main point of this example is that you can ensure you only commit
records you consider complete if you need to asynchronously process records outside
of the Consumer.poll loop. It’s important to note that this approach only uses a single
thread and consumer for the record processing, which means the code still processes
the records in order, so committing the offsets as they are handed back is safe. 

NOTE For a fuller example of threading and KafkaConsumer, you should con-
sult “Introducing the Confluent Parallel Consumer,” by Anthony Stubbs (http://
mng.bz/z8xX) and https://github.com/confluentinc/parallel- consumer.

WHEN OFFSETS AREN’T AVAILABLE

I mentioned earlier that Kafka stores offsets in an internal topic named __consumer_
offsets. But what happens when a consumer can’t find its offsets? Take the case of
starting a new consumer against an existing topic. The new group.id will not have any
commits associated with it. So, the question becomes where to start consuming if off-
sets aren’t found for a given consumer. The KafkaConsumer provides a configuration,
auto.offset.reset that allows you to specify a relative position to start consuming
when no offsets are available.

 There are three settings:

1 earliest—Resets the offset to the earliest one
2 latest—Resets the offset to the latest one
3 none—Throws an exception to the consumer

With a setting of earliest the implications are that you’ll start processing from the
head of the topic, meaning you’ll see all the records currently available. Using a set-
ting of latest means you’ll only start receiving records that arrive at the topic once
your consumer is online, skipping all the previous records currently in the topic. The
setting of none means that an exception gets thrown to the consumer, and depending
on whether you are using any try/catch blocks, your consumer may shut down.

 The choice of which setting to use depends entirely on your use case. Once a con-
sumer starts, you only care about reading the latest data, or it may be too costly to pro-
cess all records.

http://mng.bz/z8xX
http://mng.bz/z8xX
http://mng.bz/z8xX
https://github.com/confluentinc/parallel-consumer
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 Whew! That was quite a detour, but well worth the effort to learn some of the criti-
cal aspects of working with the KafkaConsumer. So far we’ve covered how to build
streaming applications using a KafkaProducer and KafkaConsumer. We’ve discussed
situations where you’re using at-least-once processing. But there are situations where
you need to guarantee that you process records exactly once. For this, use the exactly-
once semantics offered by Kafka. 

4.4 Exactly-once delivery in Kafka
The 0.11 release of Apache Kafka saw KafkaProducer introduce exactly once message
delivery. There are two modes for the KafkaProducer exactly-once message semantics:
the idempotent producer and the transactional producer. 

NOTE Idempotence means you can perform an operation multiple times, and
the result will stay the same as it was after the first application of the operation.

The idempotent producer guarantees that the producer will deliver messages in order
and only once to a topic partition. The transactional producer allows you to produce
messages to multiple topics atomically, meaning all messages across all topics succeed
together or none at all. In the following sections, we’ll discuss the idempotent and the
transactional producer.

4.4.1 The idempotent producer

You only need to set the configuration enable.idempotence=true to use the idempo-
tent producer, and it’s now the default value. Some other configuration factors come
into play:

1 max.in.flight.requests.per.connection must not exceed a value of 5 (the
default value is 5).

2 retries must be greater than 0 (the default value is Integer.MAX_VALUE).
3 acks must be set to all.

Consider the following listing. Some details are omitted for clarity.

Map<String, Object> producerProps = new HashMap<>();
//Standard configs
producerProps.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "somehost:9092");
producerProps.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, ...);
producerProps.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, ...);

//Configs related to idempotence
producerProps.put(ProducerConfig.ACKS_CONFIG, "all");  
producerProps.put(
  ProducerConfig.ENABLE_IDEMPOTENCE_CONFIG, true);    
producerProps.put(

Listing 4.6 KafkaProducer configured for idempotence

Sets acks to "all"

Enables idempotence
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  ProducerConfig.RETRIES_CONFIG,
                 ➥ Integer.MAX_VALUE);  
producerProps.put(
ProducerConfig.MAX_IN_FLIGHT_REQUESTS_PER_CONNECTION,
                    ➥ 5);         

In our earlier discussion about KafkaProducer, we outlined a situation where record
batches within a partition can end up out of order due to errors and retries, and set-
ting the max.inflight.requests.per.connection configuration to 1 allows you to
avoid this situation. Using the idempotent producer removes the need to adjust that
configuration. In section 4.2.2 on message delivery semantics, we also discussed that
you would need to set retries to 0 to prevent possible record duplication, risking possi-
ble data loss.

 Using the idempotent producer avoids both the records out of order and possible
record duplication with retries. If you require strict ordering within a partition and no
duplicated delivery of records, then using the idempotent producer is necessary.

NOTE As of the 3.0 release of Apache Kafka, the idempotent producer set-
tings are the default, so you’ll get the benefits of using it out of the box with
no additional configuration needed.

The idempotent producer uses two concepts to achieve its in-order and only-once
semantics: unique producer IDs (PIDs) and message sequence numbers. The idempo-
tent producer gets initiated with a PID. Since each creation of an idempotent pro-
ducer results in a new PID, idempotence for a producer is only guaranteed during a
single producer session. For a given PID, a monotonically sequence ID (starting at 0)
gets assigned to each batch of messages. There is a sequence number for each parti-
tion the producer sends records to (figure 4.21).

The broker maintains a listing (in-memory) of sequence numbers per topic partition per
PID. If the broker receives a sequence number not exactly one greater than the sequence

Sets retries to 
Integer.MAX_VALUE. This is 
the default value, shown 
here for completeness.

Setting max in-flight requests per
connection to 5. This is the default

value, shown here for completeness

producer 1_23 = 2

produer xyz = 3_

producer id sequence #

Tracking the producer ID to the next
expected sequence number

Broker

Figure 4.21 The broker keeps track 
of sequence numbers for each PID and 
topic partition it receives.
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number of the last committed record for the given PID and topic partition, it will
reject the produce request (figure 4.22).

If the number is less than the expected sequence number, it’s a duplication error that
the producer ignores. If the number exceeds the expected one, the produce request
results in an OutOfOrderSequenceException. For the idempotent producer, the Out-
OfOrderSequenceException is not a fatal error, and retries will continue. When there
is a retriable error, if there is more than one in-flight request, the broker will reject
the subsequent requests, and the producer will put them back to resend them to
the broker. 

 So, if you require strict ordering of records within a partition, using the idempo-
tent producer is necessary. But what do you do if you need to write to multiple topic-
partitions atomically? In that case, you would use the transactional producer, which
we’ll cover next. 

4.4.2 Transactional producer

Using the transactional producer allows you to write to multiple topic partitions atom-
ically; all of the writes succeed, or none of them do. When would you want to use the
transactional producer? In any scenario where you can’t afford to have duplicate
records, like in the financial industry, for example. 

 To use the transaction producer, you need to set the producer configuration
transactional.id to a unique value for the producer. Kafka brokers use the trans-
actional.id to enable transaction recovery across multiple sessions from the same
producer instance. Since the ID needs to be unique for each producer and applica-
tions can have numerous producers, it’s a good idea to come up with a strategy where
the ID for the producers represents the segment of the application it’s working on.

producer 123 = 2_

produer xyz =  3_

producer id sequence #

Broker

Produer 123_

The producer with the ID "123"
had a batch fail to
reach the broker; it

sends the next
batch with sequence 3. It's greater than the

expected sequence number
so the broker rejects it, and

an OutOfOrderSequenceException
results.

Figure 4.22 The broker rejects produce requests when the message sequence number 
doesn’t match the expected one.
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NOTE Kafka transactions are a deep subject and could take up an entire
chapter. Therefore, I won’t go into detail about the design of transactions.
For readers interested in more information, see the original KIP (KIP stands
for Kafka Improvement Process): http://mng.bz/9Qqq.

Enabling a producer to use transactions automatically upgrades it to an idempotent
producer. You can use the idempotent producer without transactions, but you can’t
do the opposite, using transactions without the idempotent producer. Let’s dive into
an example. We’ll take our previous code and make it transactional.

HashMap<String, Object> producerProps = new HashMap<>();

producerProps.put("transactional.id", "set-a-unique-transactional-id");  

Producer<String, String> producer = new KafkaProducer<>(producerProps);
producer.initTransactions();                

try {
    producer.beginTransaction();             
    producer.send(topic, "key", "value");   
    producer.commitTransaction();   
} catch (ProducerFencedException | OutOfOrderSequenceException  
  | AuthorizationException e) {           
      producer.close();             
} catch (KafkaException e) {          
     producer.abortTransaction();
     // safe to retry at this point    
}

After creating a transactional producer instance, you must execute the init-
Transactions() method. The initTransaction sends a message to the transaction
coordinator (the transaction coordinator is a broker handling transactions for pro-
ducers) so it can register the transactional.id for the producer to manage its trans-
actions. The transaction coordinator is a broker managing transactions for producers. 

 If the previous transaction has started, this method blocks until completion. Inter-
nally, it also retrieves some metadata, including an epoch, which this producer uses in
future transactional operations.

 Before sending records, you call beginTransaction(), which starts the transaction
for the producer. Once the transaction begins, the transaction coordinator will only
wait for a period defined by the transaction.timeout.ms (1 minute by default), and

Listing 4.7 KafkaProducer basics for transactions

Sets a unique ID for the producer. Note that
it’s up to the user to provide this unique ID.

Calls initTransactions

The beginning of the transaction, 
but does not start the clock for 
transaction timeouts

Sends record(s): in 
practice, you’d send 
more than one, but it’s 
shortened here for clarity.

Commits the transaction after
sending all the records

Handles fatal exceptions; your 
only choice at this point is to 
close the producer and re-
instantiate the producer 
instance.

Handling a non-fatal
exception, you can begin

a new transaction with
the same producer and

try again.

http://mng.bz/9Qqq
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without an update (a commit or abort), it will proactively abort the transaction. How-
ever, the transaction coordinator does not start the transaction timeout clock until the
broker sends records. Then, after the code completes processing and producing the
records, you commit the transaction. 

 You should notice a subtle difference in error handling between the transactional
example and the previous nontransactional one. With the transactional produce, you
don’t have to check for an error either with a Callback or checking the returned Future.
Instead, the transactional producer throws them directly for your code to handle.

 It’s important to note that any exceptions in the first catch block are fatal, and you
must close the producer. To continue working, you’ll have to create a new instance.
But any other exception is retryable, and you’ll need to abort the current transaction
and start over. 

 Of the fatal exceptions, we’ve already discussed the OutOfOrderSequenceExcep-
tion in section 4.4.1, and the AuthorizationException is self-explanatory. We should
quickly discuss the ProducerFencedException. Kafka has a strict requirement that
there is only one producer instance with a given transactional.id. When a new
transactional producer starts, it “fences” off any previous producer with the same ID
and must close. However, there is another scenario where you can get a Producer-
FencedException without starting a new producer with the same ID (figure 4.23). 

transactional-id   epoch

my-txn-producer 5

Transaction (txn) coordinator

Producer

1 Transaction
started

2 Network partition
occurs, and the
producer can't
commit the txn.

3

6

The txn coordinator
doesn't receive a commit
or abort, so it proactively
kills the txn and bumps the
epoch from 5 to 6.

4 The network connection is restored,
and the producer attempts to complete
the transaction. But it sends its current
epoch of 5 with the request, and it doesn't
match the current one, so the producer
is fenced.

ProducerFencedException

Figure 4.23 Transactions proactively aborted by the Transaction Coordinator cause an increase in the 
epoch associated with the transaction ID.
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When you execute the producer.initTransactions() method, the transaction coor-
dinator increments the producer epoch. The producer epoch is a number the trans-
action coordinator associates with the transactional ID. When the producer makes any
transactional request, it provides the epoch and its transaction ID. If the epoch in the
request doesn’t match the current epoch, the transaction coordinator rejects the
request, and the producer is fenced.

 The timeout expires if the current producer can’t communicate with the transac-
tion coordinator. In that case, as we discussed before, the coordinator proactively aborts
the transaction and increments the epoch for that ID. When the producer attempts to
work again after the break in communication, it finds itself fenced, and you must close
the producer and restart at that point.

NOTE There is an example for transactional producers in the form of a test
located at src/test/java/bbejeck/chapter_4/TransactionalProducerConsum-
erTest.java in the source code.

So far, I’ve only covered how to produce transactional records, so let’s move on to con-
suming them. 

4.4.3 Consumers in transactions

Kafka consumers can subscribe to multiple topics simultaneously, with some contain-
ing transactional records and others not. But for transactional records, you’ll only
want to consume ones from successful transactions. Fortunately, it’s only a matter of a
simple configuration. To configure your consumers for transactional records, you set
the isolation.level configuration to read_committed. See the following code listing
(some details are omitted for clarity). 

HashMap<String, Object> consumerProps = new HashMap<>();
consumerProps.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
consumerProps.put(ConsumerConfig.GROUP_ID_CONFIG, "the-group-id");

consumerProps.put(ConsumerConfig.ISOLATION_LEVEL_CONFIG,
    "read_committed");                                      

consumerProps.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,
    StringDeserializer.class);
consumerProps.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,
    IntegerDeserializer.class);

Setting this configuration guarantees your consumer only retrieves successfully com-
mitted transactional records. If you use the read_uncommitted setting, the consumer
retrieves successful and aborted transactional records. The consumer is guaranteed to
retrieve nontransactional records with either configuration set. There is a difference
in the highest offset a consumer can retrieve in the read_committed mode. Let’s fol-
low along with figure 4.24 to demonstrate this concept. 

Listing 4.8 KafkaConsumer configuration for transactions

Sets the isolatio
configuration fo
the consumer
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In Kafka, there is a concept of the last stable offset (LSO), an offset where all offsets
below it have been “decided.” There’s another concept known as the high water mark.
The high water mark is the most significant offset successfully written to all replicas. In
a nontransactional environment, the LSO is the same as the high water mark; its
records are considered decided or durable and written immediately. But with transac-
tions, an offset can’t be considered decided until the transaction is either committed
or aborted, so this means the LSO is the offset of the first open transaction minus 1. 

 In a nontransactional environment, the consumer can retrieve up to the high
water mark in a poll() call. But with transactions, it will only retrieve up to the LSO. 

NOTE The test, located at src/test/java/bbejeck/chapter_4/Transactional-
ProducerConsumerTest.java, also contains a couple of tests demonstrating
consumer behavior with both read_committed and read_uncommitted
configurations.

So far, we’ve covered how to use a producer and a consumer separately. But there’s one
more case to consider: using a consumer and producer together within a transaction. 

4.4.4 Producers and consumers within a transaction

When building applications to work with Kafka, it’s a common practice to consume
from a topic, perform some transformations on the records, and then produce the
results back to Kafka in a different topic. Records are considered consumed when the
consumer commits the offsets. If you recall, committing offsets is simply writing to a
topic (__consumer_offsets). 

 If you are doing a consume–transform–produce cycle, you’d want to make sure that
committing offsets is part of the transaction as well. Otherwise, you could end up in a sit-
uation where you’ve committed offsets, but the transaction fails. Then, restarting the
application skips the recently processed records as the consumer committed the offsets.

0 1 2 3 4   5 6 7 8 9

Nontraditional

High water mark, the latest offset
durable stored by all
replicas, also the

last stable offset (LSO)

Transactional

First open transaction
LSO

A nontransactional consumer can
retrieve up to this point.

A transactional consumer can
retrieve up to this point.

Figure 4.24 High water mark vs. last stable offset in a transactional environment
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 Imagine you have a stock reporting application and need to provide broker com-
pliance reporting. You must send the compliance reports only once, so the best
approach is to consume the stock transactions and build the compliance reports
within a transaction. Following this approach guarantees you send the reports only
once. Consider the following listing, found in src/test/java/chapter_4/Transactional-
ConsumeTransformProduceTest.java (some details are left out for clarity).

Map<TopicPartition, OffsetAndMetadata> offsets = new HashMap<>();  
producer.beginTransaction();                                        
consumerRecords.partitions().forEach(topicPartition -> {
    consumerRecords.records(topicPartition).forEach(record -> {
        lastOffset.set(record.offset());
        StockTransaction stockTransaction = record.value();
        BrokerSummary brokerSummary = BrokerSummary.newBuilder()    

        producer.send(new ProducerRecord<>(outputTopic, brokerSummary));
    });
    offsets.put(topicPartition,
      new OffsetAndMetadata(lastOffset.get() + 1L));     
});
try {
    producer.sendOffsetsToTransaction(offsets,
      consumer.groupMetadata());      
    producer.commitTransaction();   
}

The most significant difference between this code and a nontransactional consume–
transform–produce application is that we keep track of the TopicPartition objects
and the offset of the records. We do this because we need to provide the offsets of the
records we just processed to the KafkaProducer.sendOffsetsToTransaction method.
In consume–transform–produce applications with transactions, the producer sends
offsets to the consumer group coordinator, ensuring that the offsets are part of the
transaction. The offsets are not committed if the transaction fails or gets aborted. By
having the producer commit the offsets, you don’t need any coordination between
the producer and consumer in the cases of rolled-back transactions. 

 So far, we’ve covered using producer and consumer clients for sending and receiv-
ing records to and from a Kafka topic. Another type of client uses the Admin API,
which allows you to perform programmatically topic and consumer group-related
administrative functions. 

Listing 4.9 Example of the consume–transform–produce with transactions

Creates the HashMap to hold the offsets to commit

Starts the 
transaction

Transforms the
StockTransaction

object into a
BrokerSummary

Stores the 
TopicPartition and 
OffsetAndMetadata 
in the map

Commits the 
offsets for the 
consumed 
records in the 
transaction

Commits the
transaction
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4.5 Using the Admin API for programmatic topic 
management
Kafka provides an administrative client for inspecting topics, brokers, access control
lists (ACLs), and configuration. While there are several functions you can use for the
admin client, I’m going to focus on the administrative tasks for working with topics
and records. You’ll usually have an operations team responsible for managing your
Kafka brokers in production. What I’m presenting here are things you can do to facil-
itate testing or prototyping an application using Kafka. 

 To create topics with the admin client is simply a matter of creating the admin cli-
ent instance and then executing the command to create the topic(s).

Map<String, Object> adminProps = new HashMap<>();
adminProps.put("bootstrap.servers", "localhost:9092");

try (Admin adminClient = Admin.create(adminProps)) {    

    final List<NewTopic> topics = new ArrayList<>)();     

    topics.add(new NewTopic("topic-one", 1, 1));    
    topics.add(new NewTopic("topic-two", 1, 1));

    adminClient.createTopics(topics);  
}

NOTE I’m referring to an admin client, but the type is the interface Admin.
There is an abstract class, AdminClient, but its use is discouraged over using
the Admin interface instead. An upcoming release may remove the Admin-
Client class. 

This code can be handy when prototyping and building new applications by ensuring
the topics exist before running the code. Let’s expand this example and show how to
list topics and, optionally, delete one.

Map<String, Object> adminProps = new HashMap<>();
adminProps.put("bootstrap.servers", "localhost:9092");

try (Admin adminClient = Admin.create(adminProps)) {

     Set<String> topicNames = adminClient.listTopics().names.get();   
     System.out.println(topicNames);            

Listing 4.10 Creating a topic

Listing 4.11 More topic operations

Creates the Admin 
instance. Note the 
use of a try with 
resources block.

The list to hold 
the NewTopic 
objects

Creates the NewTopic 
objects and adds them 
to the listExecutes the command to

create the topics

In this example, you list all the non-internal topics in the cluster. Note that if you 
wanted to include the internal topics, you would provide a ListTopicOptions object, 
which you would call the ListTopicOptions.listInternal(true) method. 

Prints the current
topics found
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     adminClient.deleteTopics(Collections.singletonList("topic-two"));  
}

An additional note is that the Admin.listTopics() returns a ListTopicResult object.
To get the topic names, you use ListTopicResult.names(), which returns a Kafka-
Future<Set<String>>, so you use the get() method, which blocks until the admin cli-
ent request completes. This command completes immediately since we’re using a
broker container running on your local machine. 

 You can execute several other methods with the admin client, such as deleting
records and describing topics. But the way you execute them is very similar, so I won’t
list them here, but look at the source code (src/test/java/bbejeck/chapter_4/Admin-
ClientTest.java) to see more examples of using the admin client.

TIP Since we’re working on a Kafka broker running in a Docker container
on your local machine, we can execute all the admin client topics and record
operations risk free. However, you should exercise caution when working in a
shared environment to ensure you don’t create problems for other develop-
ers. Additionally, remember you might not have the opportunity to use the
admin client commands in your work environment. You should never attempt
to modify topics on the fly in production environments.

That wraps up our coverage of using the Admin API. In our next and final section,
we’ll discuss considerations when producing multiple event types for a topic. 

4.6 Handling multiple event types in a single topic
Let’s say you’re building an application to track activity on a commerce website. You
need to track clickstream events such as logins, searches, and purchases. Conventional
wisdom says that the different events (logins, searches) and purchases could go into
separate topics as they are independent events. But you can learn by examining how
these related events occurred in sequence. 

 But you’ll need to consume the records from the different topics and then try to
stitch the records together in the proper order. Remember, Kafka guarantees record
order within a partition of a topic but not across partitions of the same topic, not to
mention other topics.

 Is there another approach you can take? The answer is yes; you can produce those
different event types to the same topic. Assuming you provide a consistent key across the
event types, you will receive the various events in order on the same topic partition.

 At the end of chapter 3, I covered how to use multiple event types in a topic, but I
deferred to show an example with producers and consumers. Now, we’ll explain how
you can produce and consume multiple event types safely with Schema Registry.

 In chapter 3, specifically section 3.6 on schema references and multiple events per
topic, I discussed using Schema Registry to support multiple event types in a single

You delete a topic and list all of the topics again, but you
should not see the recently deleted topic in the list.
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topic. I didn’t go through an example using a producer or consumer at that point, as
it fits better in this chapter. So that’s what we’re going to cover now.

NOTE Since chapter 3 covered Schema Registry, I will not do any review in
this section. I may mention some terms introduced in that chapter, so you
should refer back to refresh your memory if needed.

Let’s start with the producer side.

4.6.1 Producing multiple event types

We’ll use this Protobuf schema in the following listing: 

syntax = "proto3";

package bbejeck.chapter_4.proto;

import "purchase_event.proto";
import "login_event.proto";
import "search_event.proto";

option java_multiple_files = true;
option java_outer_classname = "EventsProto";

message Events {
      oneof type {
        PurchaseEvent purchase_event = 1;
        LogInEvent login_event = 2;
        SearchEvent search_event = 3;
      }
      string key = 4;
    }

What happens when you generate the code from the Protobuf definition? You get an
Events object that contains a single field type that accepts one of the three possible
event objects (a Protobuf oneof field). Some details are omitted for clarity. 

...
producerConfigs.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,
  StringSerializer.class);
producerConfigs.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,
  KafkaProtobufSerializer.class);    
...

Producer<String, Events> producer = new KafkaProducer<>(
    producerConfigs));     

Since Protobuf doesn’t allow the oneof field as a top-level element, the events you pro-
duce always have an outer message container. As a result, your producer code looks

Listing 4.12 Example of creating KafkaProducer using Protobuf with a oneof field

Configures the 
producer to use the 
Protobuf serializer

Creates the KafkaProducer instance
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the same for the case when you’re sending a single event type. So, the generic type for
KafkaProducer and ProducerRecord is the class of the Protobuf outer message (in
this case, Events). In contrast, if you were to use an Avro union for the schema like
the example in the following code listing, it can be a top level element on its own. 

[
  "bbejeck.chapter_3.avro.TruckEvent",
  "bbejeck.chapter_3.avro.PlaneEvent",
  "bbejeck.chapter_3.avro.DeliveryEvent"
]

Your producer code will change to use a common interface type of all generated Avro
classes, as in the following example (some details omitted for clarity).

producerConfigs.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,
  StringSerializer.class);
producerConfigs.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,
  KafkaAvroSerializer.class);                                       
producerConfigs.put(AbstractKafkaSchemaSerDeConfig.AUTO_REGISTER_SCHEMAS,
  false);    
producerConfigs.put(AbstractKafkaSchemaSerDeConfig.USE_LATEST_VERSION,
  true);                     

Producer<String, SpecificRecord> producer = new KafkaProducer<>(
  producerConfigs())   

Because you don’t have an outer class, in this case, each event in the schema is a con-
crete class of either TruckEvent,PlaneEvent, or a DeliveryEvent. To satisfy the Kafka-
Producer generics, you need to use the SpecificRecord interface as every Avro-
generated class implements it. As we covered in chapter 3, it’s crucial when using Avro
schema references with a union as the top-level entry is to turn off autoregistration of
schemas and to enable using the latest schema version. 

 Let’s move to the other side of the equation, consuming multiple event types. 

4.6.2 Consuming multiple event types

Depending on your approach, you may need to instantiate KafkaConsumer with a
generic type of a common base class or interface that all of the records implement
when consuming from a topic with multiple event types. 

 Let’s consider using Protobuf first. Since you will always have an outer wrapper
class, that’s the class you’ll use in the generic type parameter, the value parameter in
this example (some configuration details are omitted for clarity).

Listing 4.13 Avro schema of a union type

Listing 4.14 KafkaProducer instantiation with Avro union type schema

Specifies to use the
Kafka Avro serializer

Configures the producer not 
to autoregister schemas

Sets the use latest 
schema version to true

Instantiates the producer
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consumerProps.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,
  KafkaProtobufDeserializer.class);                            
consumerProps.put(
  KafkaProtobufDeserializerConfig.SPECIFIC_PROTOBUF_VALUE_TYPE,
    Events.class);                                  

Consumer<Events> consumer = new KafkaConsumer<>(
  consumerProps);      

As you’ve seen before, you are setting up your consumer; you’re configuring the dese-
rializer to return a specific type (in this case, the Events class). With Protobuf, when
you have a oneof field, the generated Java code includes methods to help you deter-
mine the field type with hasXXX methods. In our case, the Events object contains the
following three methods:

hasSearchEvent()
 hasPurchaseEvent()
 hasLoginEvent()

The Protobuf-generated Java code also contains an enum named <oneof field name>
Case. In this example, we’ve named the oneof field type so it’s named TypeCase, and
you access it by calling Events.getTypeCase(). You can use the enum to determine
the underlying object succinctly (some details omitted for clarity):

switch (event.getTypeCase()) {
    case LOGIN_EVENT -> {                  
        logins.add(event.getLoginEvent());   
    }
    case SEARCH_EVENT -> {
        searches.add(event.getSearchEvent());
    }
    case PURCHASE_EVENT ->  {
        purchases.add(event.getPurchaseEvent());
    }
}

Which approach you use to determine the type is personal choice.
 Next, let’s see how you would set up your consumer for multiple types with the

Avro union schema (some configuration details are omitted for clarity).

consumerProps.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,
  KafkaAvroDeserializer.class);                     
consumerProps.put(KafkaAvroDeserializerConfig.SPECIFIC_AVRO_READER_CONFIG,

Listing 4.15 Configuring the consumer for working with multiple event types in Protobuf

Listing 4.16 Configuring the consumer for working with union schema with Avro

Uses Protobuf 
deserializer

Sets the Protobuf 
deserializer to return 
a specific type

Creates KafkaConsumer

Individual case statement 
based on the enum

Retrieves the event 
object using getXXX 
methods for each 
potential type in the 
oneof field

Usies the Avro deserializer
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  true);  

Consumer<SpecificRecord> consumer = new KafkaConsumer<>(consumerProps);  

You specify the KafkaAvroDeserializer for the deserializer configuration. We also
covered before how Avro is slightly different from Protobuf and JSON Schema in that
you tell it to return the specific class type, but you don’t provide the class name. So
when you have multiple event types in a topic and are using Avro, the consumer needs
to use the SpecificRecord interface again in the generics shown in listing 4.16. 

 So, by using the SpecificRecord interface when you start retrieving records from
the Consumer.poll call, you’ll need to determine the concrete type to do any work
with it. See the following listing (some details omitted for clarity). 

SpecificRecord avroRecord = record.value();
if (avroRecord instanceof PlaneEvent) {
    PlaneEvent planeEvent = (PlaneEvent) avroRecord;
    ....
} else if (avroRecord instanceof TruckEvent) {
    TruckEvent truckEvent = (TruckEvent) avroRecord;
    ....
} else if (avroRecord instanceof DeliveryEvent) {
    DeliveryEvent deliveryEvent = (DeliveryEvent) avroRecord;
   ....
}

The approach here is similar to what you did with Protobuf, but this is at the class level
instead of the field level. You could also model your Avro approach to something sim-
ilar to Protobuf and define a record that contains a field representing the union. See
the following example.

{
  "type": "record",
  "namespace": "bbejeck.chapter_4.avro",
  "name": "TransportationEvent",       

  "fields" : [
    {"name": "txn_type", "type": [          
      "bbejeck.chapter_4.avro.TruckEvent",
      "bbejeck.chapter_4.avro.PlaneEvent",
      "bbejeck.chapter_4.avro.DeliveryEvent"
    ]}
  ]
}

In this case, the generated Java code provides a single method, getTxnType(), but it
has a return type of Object. As a result, you’ll need to use the same approach of

Listing 4.17 Determining the concrete type of a record using Avro union schemas

Listing 4.18 Avro with embedding the union field in a record

Specifies the deserializer to return a specific Avro type Creates KafkaConsumer

Outer class 
definition

Avro union type 
at the field level
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checking for the instance type as you previously did when using a union schema,
essentially pushing the task of determining the record type from the class level to the
field level. 

NOTE Java 16 introduces pattern matching with the instanceof keyword that
removes the need for casting the object after the instanceof check.

Summary
 Kafka producers send records in batches to topics on the Kafka broker and will

continue to retry sending failed batches until the delivery.timeout.ms config-
uration expires. You can configure a Kafka producer to be an idempotent pro-
ducer, meaning it guarantees to send records only once and in order for a given
partition. Kafka producers also have a transactional mode that guarantees
exactly-once delivery of records across multiple topics. You enable the Kafka
transactional API in producers by using the configuration transactional.id,
which must be a unique ID for each producer. When using consumers in the
transactional API, you want to set the isolation.level to read_committed so
you only consume committed records from transactional topics.

 Kafka consumers read records from topics. Multiple consumers with the same
group ID get topic partition assignments and work together as one logical con-
sumer. Should one group member fail, its topic partition assignment(s) are
redistributed to other group members via a process known as rebalancing. Con-
sumers periodically commit the offsets of consumed records, so when restarted
after a shutdown, they pick up processing where they left off.

 Kafka producers and consumers offer three different delivery guarantees at
least once, at most once, and exactly once. At-least-once delivery means no
records are lost, but you may receive duplicates due to retries. At-most-once
delivery means that you won’t receive duplicate records, but records could be
lost due to errors. Exactly-once delivery means you won’t receive duplicates and
won’t lose any records due to errors.

 Static membership provides stability in environments where consumers fre-
quently drop off only to return online within a reasonable time.

 CooperativeStickyAssignor provides the much improved rebalance behavior.
The cooperative rebalance protocol is the best choice in most cases as it signifi-
cantly reduces the amount of downtime during a rebalance.

 The Admin API provides a way to create and manage topics, partitions, and
records programmatically.

 When you have different event types, but the events are related and processing
them in order is essential, placing the multiple event types in a single topic is
worth considering until the delivery.timeout.ms configuration expires. You
can configure a Kafka producer to be an idempotent producer, meaning it
guarantees it will send records only once and in order for a given partition.
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Kafka producers also have a transactional mode that guarantees exactly-once
delivery of records across multiple topics. You enable the Kafka transactional
API in producers by using the configuration transactional.id, which must be
a unique ID for each producer. When using consumers in the transactional API,
you want to set the isolation.level to read_committed, so you only consume
committed records from transactional topics. 



Kafka Connect
This chapter will teach you how to move events into and out of Apache Kafka
quickly. While Kafka can function as a central nervous system for data, it primarily
provides a decoupled and centralized approach to data access. Still, other essential
services, like full-text searching, report generation, and data analysis, can only be
serviced by applications specific to those purposes. No single technology or applica-
tion can satisfy all the needs of a business or organization.

 We’ve established in earlier chapters that Kafka simplifies the architecture for a
technology company by ingesting events once, and any group within the organiza-
tion can consume events independently. In the previously mentioned cases where
the consumer is another application, you’ll need to write a consumer specifically
for that application. You’ll repeat a lot of code if you have more than one. A better

This chapter covers
 Getting started with Kafka Connect

 Applying Single Message Transforms

 Building and deploying your own connector

 Making your connector dynamic with a monitoring 
thread

 Creating a custom transformation
132
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approach would be to have an established framework that you can deploy that handles
either getting data from an application into Kafka or getting data out of Kafka into an
external application. That framework exists and is a critical component of Apache
Kafka: Kafka Connect.

5.1 An introduction to Kafka Connect
Kafka Connect is part of the Apache Kafka project. It provides the availability to inte-
grate Kafka with other systems like relational databases, search engines, NoSQL
stores, Cloud object stores, and data warehouse systems. Connect lets you quickly
stream large amounts of data in and out of Kafka. The ability to perform this stream-
ing integration is critical to legacy systems in today’s event streaming applications. 

 Using Connect, you can achieve a two-way flow between existing architectures
and new applications. For example, you can migrate incoming event data from
Kafka to a typical Model–View–Controller (MVC) application by using a connector
to write results to a relational database. So you could consider Kafka Connect as a
sort of “glue” that enables you to integrate different applications with new sources of
event data seamlessly. 

 One concrete example of Kafka Connect is capturing changes in a database table
as they occur, called change data capture (CDC). CDC exports changes to a database
table (INSERT, UPDATE, and DELETE) to other applications. Using CDC, you store the
database changes in a Kafka topic, making them available to downstream consumers
with low latency. One of the best parts of this integration is that the old application
doesn’t need to change; it’s business as usual. 

 Now, you could implement this type of work yourself using producer and con-
sumer clients. But that statement oversimplifies all the work you would be required to
put into getting that application production-ready. Not to mention that each system
you consume from or produce to would require different handling.

 Consuming changes from a relational database differs from consuming from a
NoSQL store, and producing records to ElasticSearch differs from producing records
to Amazon S3 storage. It makes sense to go with a proven solution with several off-the-
shelf components ready to use. There are hundreds of connectors available from Con-
fluent (https://www.confluent.io/hub/); while some are commercial and require pay-
ment, over 100 connectors are freely available for you to use.

 Connect runs in a separate process from a Kafka cluster, either as a single appli-
cation or several instances as a distributed application. Connect exposes the con-
nectors as plugins that you configure on the classpath. No coding is involved in
running a connector; you supply a JSON configuration file to the connect server.
Having said that, if no connector is available to cover your use case, you can also
implement your own connector. We’ll cover creating a custom connector in the last
section of this chapter.

 Regarding Connect, it’s important to understand there are two kinds of connec-
tors: sources and sinks. A source connector will consume data from an external source

https://www.confluent.io/hub/
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such as a Postgres or MySql database, MongoDB, or an S3 bucket into Kafka topics.
A sink connector does the opposite, producing event data from a Kafka topic into
an external application like ElasticSearch or Google BigQuery. Additionally, due to
Kafka’s design, you can simultaneously have more than one sink connector export-
ing data from a Kafka topic. This pattern of multiple sink connectors means that
you can take an existing application and, with a combination of source and sink con-
nectors, share its data with other systems without making any changes to the origi-
nal application.

 Finally, Connect provides a way to modify data coming into or out of Kafka. Sin-
gle Message Transforms (SMTs) allow you to alter the format of records from the
source system when reading them into a Kafka. Or, if you need to change the format
of a record to match the target system, you can also use an SMT there. For example,
when importing customer data from a database table, you may want to mask sensi-
tive data fields with the MaskField SMT. There’s also the ability to transform the for-
mat of the data. 

 Let’s say you’re using the Protobuf format in your Kafka cluster. You have a data-
base table that feeds a topic via a source connector, and for the target topic, you
also have a sink connector writing records out to a Redis key-value store. Neither
the database nor Redis works with the Protobuf format in either case. But by using
a value converter, you can seamlessly transform the incoming records into a Proto-
buf format from the source connector. In contrast, the sink connector will use
another value converter to change the outgoing records back into the plain text
from Protobuf.

 To wrap up our introduction, in this chapter, you’ll learn how to deploy and use
Kafka Connect to integrate external systems with Kafka, enabling you to build event-
streaming data pipelines. You’ll learn how to apply SMTs to make changes to incom-
ing or outgoing records and how to develop custom transformations. Finally, we’ll
cover how to build your own connector if no existing one meets your needs.

5.2 Integrating external applications into Kafka
So far, we’ve learned what Connect is and that it acts as a “glue” that can bind differ-
ent systems together, but let’s see this in action with an example. 

 Imagine you are responsible for coordinating new student signups for college ori-
entation. The students indicate which orientation session they will attend through a
web form the college has used for some time. It used to be that when the student
arrived for orientation, other departments, housing, food service, and guidance
would need to meet with the students. To use the information the students applied on
the form, a staff member would print the information and hand out paper copies to
each department’s staff member.

 However, this process was error-prone and could be time-consuming as other staff
members saw the student information for the first time, and figuring out the logistics
for each student on the spot takes time. It would be better if a process were in place to
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share the information as soon as students signed up. You’ve learned that the university
has recently embarked on a technological modernization approach and has adopted
Kafka at the center of this effort.

 The Office of Student Affairs, the department responsible for getting orientation
information, is set on its current application structure, a basic web application feeding
a PostgreSQL database. The reluctance of the department to change at first presents
an issue, but then you realize there’s a way to integrate their data into the new event
streaming architecture.

 You can send orientation registrant information directly into a Kafka topic using a
JDBC source connector. Then, the other departments can set up consumer applica-
tions to receive the data immediately upon registration.

NOTE The integration point is a Kafka topic when you use Kafka Connect to
bring in data from other sources. This means any application using Kafka-
Consumer (including Kafka Streams) can use the imported data.

Figure 5.1 shows how this integration between the database and Kafka works. In this
case, you’ll use Kafka Connect to monitor a database table and stream updates into a
Kafka topic.

Now that you’ve decided to use Kafka Connect to help you integrate the orientation
student signups with the new event streaming platform rolled out at the university,
let’s dive in with a simple working example in the next section. After that, we’ll go into
more detail on how Connect works and the main concepts. 

5.3 Getting started with Kafka Connect
Kafka Connect runs in two flavors: distributed and standalone mode. Running in dis-
tributed mode makes sense for most production environments because you can use the
parallelism and fault tolerance available when running multiple Connect instances.
Standalone mode is suitable for development on a local machine or your laptop.

MySQL

PostgreSQL

Kafka Connect
Kafka broker

Source connector

Figure 5.1 Kafka Connect integrating a database table and a Kafka topic
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NOTE I’m discussing these configuration parameters here for completeness.
You won’t have to set any of these configurations, as they already exist in the
docker-compose file under the connect service. The connect parameters in
the file will take a form similar to CONNECT_PLUGIN_PATH, which will set the
plugin.path configuration. The docker-compose file will also start a Postgres
DB instance and automatically populate a table with values needed to run the
example. 

I want to explain briefly what a converter is. Connect uses a converter to switch the
form of the data captured and produced by a source connector into Kafka format or
convert from Kafka format to an expected format of an external system, as in the case
of a sink connector (figure 5.2).

 Since you can change this setting for individual connectors, any connector can
work in any serialization format. For example, one connector could use Protobuf
while another could use JSON.

Setting up Kafka Connect
We’ll use a connect Docker image instead of downloading Kafka Connect and running
it locally on your laptop. Remember, Kafka Connect runs separately from a Kafka bro-
ker, so setting up a new docker-compose file and adding a connect service simplifies
development and allows you to focus on learning. 

When setting up Kafka Connect, you’ll provide two levels of configuration. One set of
configurations is for the connect server (or worker), and the other is for the individual
connector. I’ve just mentioned a new term, connect worker, that we still need to dis-
cuss, but we’ll cover what a worker is along with other core connect concepts in the
next section.

Let’s look at some of the key configuration parameters you’ll work with for Kafka
Connect:

 key.converter—Class of the converter that controls serialization of the key
from Connect format to the format written to Kafka. In this case, you’ll use
the built-in org.apache.kafka.connect.storage.StringConverter. The
value specified here sets a default converter for connectors created on this
worker, but individual connectors can override this value.

 value.converter—Class of the converter controlling serialization of the
value from Connect format to the format written to Kafka. You’ll use the built-
in org.apache.kafka.connect.json.JsonConverter for this example. Like
the key converter, this is a default setting, and connectors can use a different
setting.

 plugin.path—Tells Connect the location of plugins, such as connectors and
converters, and their dependencies on the worker.

 group.id—An ID for all the consumers in the connected cluster; this setting
is used for source connectors only.
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Next, look at some configurations you’ll provide for a connector. In this case, we’re
using a JDBC connector for our first example, so you’ll need to provide the informa-
tion needed for the connector to connect to the database, like username and pass-
word, and you’ll also need to specify how the connector will determine which rows to
import into Kafka. Let’s take a look at a few of the more important configs for the
JDBC connector:

 connector.class—Class of the connector.
 connection.url—URL used to connect to the database.
 mode—Method the JDBC source connector uses to detect changes.
 timestamp.column.name—Name of the column tracked for detecting changes.
 topic.prefix—Connect writes each table to a topic named topic.prefix+Table name.

Most of these configurations are straightforward, but we need to discuss two of them,
mode and timestamp.column.name, in more detail because they have an active role in
how the connector runs. The JDBC source connector uses mode to detect which rows it
needs to load. 

 For this example, you’ll use the timestamp setting for the mode, which relies on a
column containing a timestamp, named in the timestamp.column.name config. While
it should be evident that INSERT sets the timestamp, we’ve also added a trigger to the

Kafka Connect

Source
connector

Converter

ProducerExternal
application

Kafka

Connect format
Protobuf

Kafka Connect

Sink
connector

Converter

Consumer External
application

Kafka

Protobuf Connect format

Figure 5.2 Connect converter changes the data format before the data gets into Kafka or after it leaves Kafka.
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database Docker image that refreshes the timestamp with UPDATE statements. By using
a timestamp, the connector will pull any values from the database table whose time-
stamp is greater than the last one from the previous import. 

 Another value for the mode could be incrementing, which relies on a column with
an auto-incrementing number that focuses only on new inserts. The JDBC connector
determines which rows to import using several configuration items. Under the covers,
the connector will query the database, producing the results into Kafka. In this chapter,
I won’t go into more detail on the JDBC connector. It’s not that we’ve covered every-
thing there is to know. The information on the JDBC connector could fill an entire
chapter. The more important point is that you need to provide configurations for the
individual connector, and most offer a rich set to control the connector’s behavior. 

 Now, let’s look at how you start an individual connector. It’s easily achieved by
using connects provided REST API. The following is a sample of what you’ll use to
launch a connector.

curl -i -X PUT http://localhost:8083/connectors/
  jdbc_source_connector_example/config \
  -H "Content-Type: application/json" \
  -d '{
        "connector.class": "io.confluent.connect.jdbc.JdbcSourceConnector",
        "connection.url": "jdbc:postgresql://postgres:5432/postgres",
        "connection.user": "postgres",
        "connection.password": "postgres",
        "mode":"timestamp",
        "timestamp.column.name":"ts",
        "topic.prefix":"postgres_",
        "value.converter":"org.apache.kafka.connect.json.JsonConverter",
        "value.converter.schemas.enable": "false",
        "tasks.max":"1"
     }'

So, this REST call will start the JDBC connector running. There are a few configura-
tions I’d like to call your attention to here. You set value.converter, which will con-
vert the incoming records from the database into JSON format. But you’ll see a
value.converter.schemas.enable configuration set to false, meaning the converter
will not preserve the schema from the connector in the message’s contents. 

 Remember, when using a JSON converter, the schema is attached to each incom-
ing record, which can increase its size significantly. We can turn off the inferred sche-
mas since we are producing records into Kafka. But when consuming from a Kafka
topic to write to an external system, depending on the connector, you must enable the
schema inferring so Connect can understand the byte arrays stored in Kafka. A better
approach would be to use Schema Registry, and then you could use Avro, Protobuf, or
JSONSchema for the value converter. We covered schemas and Schema Registry in
chapter 3, so I won’t review those details again here. 

Listing 5.1 REST API call to start a connector

Specifies to use a
JsonConverter, which converts

incoming records to JSON

Disables the schema 
for the recordsSets the maximum 

number of tasks for 
the connector
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 You also see a tasks.max setting. To fully explain this configuration, let’s provide
some additional context. So far, we’ve learned that you use Kafka Connect to pull data
from an external system into Kafka or to push data from Kafka out to another applica-
tion. You just reviewed the JSON required to start a connector, and it does not do the
pulling or pushing of data. Instead, the connector instance is responsible for starting
a number of tasks whose job it is to move the data. 

 Earlier in the chapter, we mentioned two types of connectors: SourceConnector
and SinkConnector. They use two corresponding kinds of tasks: SourceTask and
SinkTask. It’s the connector’s primary job to generate task configurations. When run-
ning in distributed mode, the Connect framework code will distribute and start them
across the different workers in the Connect cluster. Each task instance will run in its
own thread. Note that setting the tasks.max doesn’t guarantee the total number of
tasks that will run; the connector will determine the correct number it needs up to the
maximum number. At this point, it would be helpful to look at an illustration of the
relationship between workers’ connectors and tasks in figure 5.3. 

Here, we’re looking at Kafka Connect in standalone mode; there’s a single worker, a
JVM process responsible for running the connector(s) and their task(s). Now let’s
take a look at distributed mode in figure 5.4.

 As you can see here, in distributed mode, the tasks are spread out to other workers
in the Connect cluster. Not only does distributed mode allow for higher throughput
due to spreading out the load, but it also provides the ability to continue processing in
the face of a connector failure. Let’s look at one more diagram to illustrate what this
means in figure 5.5.

 From looking at this illustration, if a Kafka Connect worker stops running, the con-
nector task instances on that worker will get assigned to other workers in the cluster.
So, while standalone mode is excellent for prototyping and getting up and running

Kafka Connect
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Task 2

Task 1

Task 2

Connector X

Connector Y
JVM process
executing the
connectors and
their tasks

Source connector X
with 2 tasks

Sink connector Y
with 2 tasks

Figure 5.3 Connect in standalone mode; all tasks reside in one worker.
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quickly with Kafka Connect, running in distributed mode is recommended for pro-
duction systems as it provides fault tolerance; tasks from failed workers get assigned to
the remaining workers in the cluster. Note that in the distributed mode, you’ll need
to issue a REST API call to start a particular connector on each machine in the Con-
nect cluster.

 Now, let’s get back to our example. You have your connector running, but there
are a few things you’d like to do differently. First, there are no keys for the incoming
records. No keys are a problem because records for the same student may end up on
different partitions. Since Kafka only guarantees ordering within a partition, multiple
updates made by a student could get processed out of order. Second, the students

Kafka Connect
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Task 2

Connector X

Connector Y

Kafka Connect

Task 2

Task 1

Connector X

Connector Y

Figure 5.4 Connect in distributed mode; tasks get spread around to other 
connector instances.
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Figure 5.5 Connect in distributed mode provides fault tolerance.
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input their social security numbers. It’s essential to limit the exposure of that data, so
it would be great to alter or mask it before it gets into Kafka. Fortunately, Connect
offers a simple but powerful solution: transforms. 

5.4 Applying Single Message Transforms
Simply put, SMTs can perform lightweight changes to records before they get into
Kafka or on their way out to external systems, depending on whether you’re using a
source or sink connector. The main point about transforms is that the work done
should be simple, meaning they work on only one record at a time (no joins or aggre-
gations), and the use case should be applicable solely for connectors and not custom
producer or consumer applications. It’s better to use Kafka Streams or ksqlDB for any-
thing more complex, as they are purpose-built for complex operations. Figure 5.6
depicts the role of the transformation. 

As you can see here, the role of an SMT is to sit between the connector and the con-
verter. For a source connector, it will apply its operation the record before it gets to the
converter, and in the case of a sink connector, it will perform the transformation after
the converter. In both cases, SMTs operate on data in the same format, so most SMTs
will work equally well on a sink or a source connector.

 Connect provides several SMTs out of the box that tackle a wide range of use cases.
For example, there are SMTs for filtering records, flattening nested structures, or
removing a field. I won’t list them all here, but for the complete list of SMTs, consult
the Kafka Connect documentation (http://mng.bz/84VP).

 We’ll use three transforms: ValueToKey, ExtractField, and MaskField. Working
with the provided SMTs requires adding some JSON configuration; no code is
required. You can write your own transform if you have a use case where the provided

Source
connector converter

Sink
connector

Converter

Single Message
Transform

Single Message
Transform

SMT with source connector

SMT with sink connector

Figure 5.6 A connect 
converter changes the data 
format before the data gets into 
Kafka or after it leaves Kafka.

http://mng.bz/84VP
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transformations won’t offer what you need. We’ll cover creating a custom SMT a little
later in the chapter. The following listing provides the complete JSON you’ll use to
add the necessary transforms for your connector.

"transforms":"copyFieldToKey, extractKeyFromStruct, maskSsn",
 "transforms.copyFieldToKey.type":
       "org.apache.kafka.connect.transforms.ValueToKey",
 "transforms.copyFieldToKey.fields":"user_name",
 "transforms.extractKeyFromStruct.type":
        "org.apache.kafka.connect.transforms.ExtractField$Key",
 "transforms.extractKeyFromStruct.field":"user_name", 
 "transforms.maskSsn.type":
        "org.apache.kafka.connect.transforms.MaskField$Value",
 "transforms.maskSsn.fields":"ssn",   
  "transforms.maskSsn.replacement":"xxx-xx-xxxx"

Most of the JSON for the transform configuration should be straightforward. There’s
a comma-separated list of names, each representing a single transform.

TIP The order of names in the transforms entry is not arbitrary. The names
are in order of how the connector will apply them, so it’s essential to consider
how each transformation will change the data going through the transforma-
tion chain and how it will affect the outcome.

Then, for each name in the list, you provide the class of the transform and the field to
which it will apply. But there is one thing I’d like to point out that might not be readily
apparent. With the copyFieldToKey transform, you’ve indicated that you want to use
the user_name column for the key of each resulting Kafka record. But the result pro-
duces a single field in STRUCT that looks like the following listing. 

Struct {"user_name" : "artv"}

But you want the value of the struct field user_name for the key, so you also apply the
ExtractField transform. In the configs, you need to specify the transform that will
extract the key like this: ExtractField$Key. Connect applies the second transform, and
the key ends up with the raw single value applied to the key for the incoming record. 

 I want to point out something about the transformations that could go unnoticed
here. You can chain multiple transforms together to operate on the same field; this is

Listing 5.2 The JSON transform configuration

Listing 5.3 Struct

Names for each transform
that the connector will use

Class for the 
copyFieldToKey;
the ValueToKey 
extracts a field 
from the value 
for the key.

The field name that will 
be the key user_name

Class for the extractKeyFromStruct alias
Field extracted from the

STRUCT is also user_name

Specifying the
MaskField class for

maskSsn aliasSets the ssn field
for masking

The pattern used to replace 
the ssn number
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demonstrated in our example by first copying a field to the key and then extracting a
value from the intermediate result of the field copy operation. But there is a balance
you’ll need to strike here; if you find yourself building a transform chain that starts to
go beyond 2, consider using Kafka Streams to perform the transformation work, as it
will be more efficient.

 The final transform you utilize is MaskField, which you’ll apply to the field con-
taining the student’s Social Security number. Again, you’ll see in the configuration
how you specified you want to apply the masking of the value with the Mask-
Field$Value setting. In this case, you specify the replacement for the Social Security
number as a string of x characters for each number, resulting in a value of xxx-xx-
xxxx. With the MaskField transform, you also have the option of not specifying a spe-
cific replacement, and it will use an empty value based on the type of the field it’s
replacing—an empty string for string field or 0 for numerical ones. 

 Now, you’ve completed a fully configured connector that will poll the database for
changes or updates and import them into Kafka, let’s make your relational database
part of your event streaming platform!

NOTE We’ve talked about the JDBC connector in this section. There are a
few corner cases where the JDBC connector won’t get the latest changes into
Kafka. I won’t go into those here, but I recommend looking at the Debezium
connector for integrating relational databases with Apache Kafka (http://
mng.bz/E9JJ). Instead of using an incrementing value or timestamp field,
Debezium uses the database changelog to capture changes that need to go
into Kafka.

To run the example we just detailed in this section, consult the README file in the
chapter 5 directory of the source code for this book. There’s also a sink connector as
part of the example, but we won’t cover it here as you deploy it similarly, provide some
JSON configurations, and issue a REST call to the connect worker.

 So far, you’ve set up a source connector, and you’ll also want to send events from
Kafka into an external system. To accomplish that, you’ll use a sink connector, specifi-
cally an elastic search sink connector. 

5.5 Adding a sink connector
One additional feature you suggested adding was the ability for incoming students to
search for a potential roommate based on the input data gathered for the orientation
process. When students come for orientation, part of the process can be to enter a few
keywords and get hits from other students who have the same preferences. 

 When you pitched the idea, everyone was enthusiastic, but questions on how to get
the data seemed too complicated. The team wanted to avoid setting up a new pipeline
for gathering information, so they put the idea on hold. But now, with the adoption of
Kafka and Connect for importing the incoming student information, exposing a
search application with Elastic Search (https://www.elastic.co/) is as simple as provid-
ing a sink connector. 

http://mng.bz/E9JJ
http://mng.bz/E9JJ
http://mng.bz/E9JJ
https://www.elastic.co/
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 Fortunately, there’s already an elastic search sink connector, so all you need to do
is install the jar files to your running Connect cluster, and you’re all set. So, getting
started with the elastic sink connector is simply a matter of making a REST API call to
get the connector up and running.

$ curl -i -X PUT localhost:8083/connectors/
    student-info-elasticsearch-connector/config \
    -H "Content-Type: application/json" \
    -d ‘{
            "connector.class":
         "io.confluent.connect.elasticsearch.ElasticsearchSinkConnector",
            "connection.url": "http://elasticsearch:9200",
            "tasks.max": "1",
            "topics": "postgres_orientation_students", 
            "type.name": "_doc",
            "value.converter": "org.apache.kafka.connect.json.JsonConverter",
            "value.converter.schemas.enable": "false",
            "schema.ignore": "true",
            "key.ignore": "false",
            "errors.tolerance":"all", 
            "errors.deadletterqueue.topic.name":"orientation_student_dlq", 
            "errors.deadletterqueue.context.headers.enable": "true",
            "errors.deadletterqueue.topic.replication.factor": "1" 

        }’

For the most part, the configurations here are similar to what you saw for the JDBC
connector, except for the configurations specific to the connector. There is the topic
name the sink connector will use to read records and write them to elastic search.

 But there are three configurations, starting with errors, that we haven’t seen
before, and we should discuss them now. Since a sink connector is attempting to write
event records to an external system, there’s a good possibility for errors. After all,
working with distributed applications means embracing failure and providing the
mechanisms for how you want your application to respond to them.

NOTE Listing 5.4 sets the replication factor for the dead letter queue (DLQ)
topic. In a single-node cluster, such as our Docker development environment,
you’ll want to put this to 1. Otherwise, the connector won’t start since there
aren’t enough brokers for the default replication factor of 3.

The errors.tolerance configuration in listing 5.4 specifies how the connector will
respond when it gets an error. Here, you’ve used a setting of all, meaning that the
connector will keep running regardless of errors during conversion and transforma-
tion while writing records to the sink. Then, you’d need to review the logs for that spe-
cific connector to determine what went wrong and how to proceed. While the all
setting allows the connector to continue operating, you still want to know when a

Listing 5.4 REST call to install an elastic connector

Topic to import 
records from

Error
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setting

 The name of the
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record fails. The configuration creates a dead letter queue (DLQ), where Connect
can set aside the records it can’t deliver. 

 However, when enabling a DLQ topic, Connect only stores the failed record. To
get the reason why the failure occurred, you’ll need to allow storage of some addi-
tional information in the record header, which you’ve done. We previously covered
record headers, so you can refer to chapter 4 to review information on reading with
record headers.

 As with anything in life, there are tradeoffs to consider when using a DLQ. While a
setting of none for errors.tolerance and shutting down on error sounds harsh, if
this were a production system, you’d probably find out quickly that something was
amiss and needed to be fixed. Contrast this with the setting of all, which will con-
tinue regardless of any errors the connector may encounter; it’s critical to track any
errors because running indefinitely with an error condition could arguably be worse
than shutting down. In other words, “if a tree falls in a forest and no one is there to
hear it, does it make a sound?” If errors arrive in your DLQ, but no one is looking at it,
it’s the same as no errors occurring.

 So, with enabling a DLQ, you’ll want to set up some monitoring (i.e., Kafka-
Consumer) that can alert on any errors and possibly take action, like shutting down the
problematic connector in the face of continuous problems. The source code for the
book will have a basic implementation demonstrating this type of functionality.

 So now you’ve learned about using a source connector to bring event data into
Kafka and a sink connector to export from Kafka to an external system. While this is a
simple workflow, this example is not representative of the full usefulness of Kafka Con-
nect. First, there could be several sink connectors writing the imported records out to
external systems, not just one, and the use of Kafka to create an event streaming plat-
form could be increased by effectively bringing all external systems into one central
data flow.

 In practice, you can have several different source connectors importing data,
and there would likely be more processing of those incoming records and not a sim-
ple data pipe demonstrated in this chapter. For example, consider that any number
of client applications could rely on the topic with data a source connector provides.
Each application could produce unique results for another topic. Then, any num-
ber of sink connectors could produce the updated records back out of external sys-
tems in your architecture.

 Connect plays an integral part in gluing together external data applications into
the Kafka event streaming platform. Using Connect, any application with a connector
can plug into it and use Kafka as the central hub for all incoming data.

 But what if you have a source or a sink candidate that doesn’t have an existing con-
nector? While there are hundreds of existing connectors, the one you need might not
exist. But there’s good news: a Connect API makes it possible for you to implement
your own connector, and that’s what you’ll do in the next section. 
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5.6 Building and deploying your own connector
In this section, we will walk through the steps you’ll take to implement your connec-
tor. Let’s say you work for a fintech firm, and along with providing institutional-grade
financial data to investors and investment firms, your company is branching out and
wants to provide analysis based on a subscription model. 

 To offer the analysis data, the company has set up a few departments to ingest real-
time stock ticker data. Getting an entire feed of live data is costly, and the cost for each
department to have its feed would be prohibitively expensive. But you realize that if
you created a source connector, you could consume the feed once, and every depart-
ment could set up its client application to consume the feed from your Kafka cluster
in near real time. So, with your idea firmly in mind, let’s move on to implementing
your connector.

5.6.1 Implementing a connector

To develop your connector, you will work the following interfaces: Connector and
Task. Specifically, you will extend the abstract class SourceConnector, which extends
the Connector class. You’ll need to implement several abstract methods, but we’re not
going to go over each one, just the most significant ones. You can consult the source
code from the book to look at the entire implementation. 

 Let’s start with the configuration. The Connector class only does a little when it
comes to moving data. Its primary responsibility is properly configuring each Task
instance as it’s the Task that gets data into or out of Kafka. So you’ll create a Stock-
TickerSourceConnectorConfig class that you’ll instantiate directly inside your con-
nector. The configuration class contains a ConfigDef instance to specify the expected
configurations. 

public class StockTickerSourceConnector extends SourceConnector {
private static final ConfigDef CONFIG_DEF = new ConfigDef()
            .define(API_URL_CONFIG,         
                   ConfigDef.Type.STRING,
                   ConfigDef.Importance.HIGH,
                   "URL for the desired API call")
            .define(TOPIC_CONFIG,    
                   ConfigDef.Type.STRING,
                   ConfigDef.Importance.HIGH,
                   "The topic to publish data to")

... followed by the rest of the configurations
}

Here, you can see we’re adding the configurations using a fluent style where we chain
the method calls define one after another. Note that there are more configurations
we’re adding, but it’s not necessary to show all of them here; you get the point of
how they all get added. By building the ConfigDef, the connector will “know” what

Listing 5.5 Setting up a ConfigDef instance

Creates the 
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instanceDefines the

API URL
config

Adds the topic name 
to the configuration
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configurations to expect. The ConfigDef.define method allows you to provide a
default value. So, if you don’t set a configuration, the default value gets populated in
its place. But if you don’t give a default value, the connector starts it will throw a
ConfigException and shuts down. The next part of the connector we’ll want to look
at is how it determines the configuration for each Task instance. 

@Override
public List<Map<String, String>> taskConfigs(int maxTasks) {
 List<Map<String, String>> taskConfigs = new ArrayList<>();
 List<String> symbols = monitorThread.symbols(); 
 int numTasks = Math.min(symbols.size(), maxTasks);
 List<List<String>> groupedSymbols =
       ConnectorUtils.groupPartitions(symbols, numTasks); 
 for (List<String> symbolGroup : groupedSymbols) {
    Map<String, String> taskConfig = new HashMap<>(); 
    taskConfig.put(TOPIC_CONFIG, topic);
    taskConfig.put(API_URL_CONFIG, apiUrl);
    taskConfig.put(TOKEN_CONFIG, token);
    taskConfig.put(TASK_BATCH_SIZE_CONFIG, Integer.toString(batchSize));
    taskConfig.put(TICKER_SYMBOL_CONFIG, String.join(",", symbolGroup)); 
    taskConfigs.add(taskConfig);
 }
return taskConfigs;
}

You’ll notice you’re getting the list of symbols from an instance variable named monitor-
Thread. I want to defer talking about this field until we get to monitoring later in this
chapter (section 5.6.2). For now, it’s enough to know this method returns the list of
symbols needed to run the ticker. 

 If you recall from earlier in the chapter, one of the configurations you set for the
connector is max.tasks. This configuration determines the maximum number of
tasks the connector may spin up to move data. Our stock API service can retrieve
information about those companies using a comma-separated list of up to 100 ticker
symbols. You’ll want to partition the ticker symbols into separate lists to ensure Con-
nect evenly distributes the work across all tasks. 

 For example, if you have specified 2 as the maximum number of tasks and there are
10 ticker symbols, the connector will partition them into two lists of 5 ticker symbols
each. This grouping of ticker symbols uses the ConnectionUtils.groupPartitions util-
ity method. That’s about as much as we want to cover for the connector implementa-
tion, so we’ll move on to implementing the task. 

 Since you’re creating a SourceConnector, you’ll extend the abstract class Source-
Task to build your task implementation, StockTickerSourceTask. There’s a handful
of methods on the class you’ll need to override, but we’ll focus on the poll() method
since that is at the heart of what a SourceTask does: it gets data from an external
source and loads it into Kafka. 

Listing 5.6 Configuring the tasks
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 Let’s review the behavior of a SourceTask at a high level. Once you start a connec-
tor, it will configure the correct number of tasks and start them. Once the thread exe-
cutes, the SourceTask.poll() is called periodically to retrieve records from the
configured external application. There’s no overall configuration on how often to
execute the poll method. While you don’t have explicit control over how often to call
your task’s poll method, you can add some throttling inside your task implementa-
tion to wait a desired amount of time before executing your SourceTask logic. 

 There’s a basic implementation of throttling in our SourceTask example. Why
would you want to add throttling to the source task execution? In our case, we will
issue a request to an HTTP endpoint for a stock service API. Many available APIs limit
how often you can hit the service or give a total number of requests per day. So, by
adding throttling, you can ensure the API calls stay within the plan limits.

 Also, you’ll want to handle the case when there are no records to return. It would
be a good idea to wait a small amount of time, 1 to 2 seconds, for example, to allow
the source to have something new to return. It’s essential, however, to return control
to the calling thread by returning null so the worker can respond to requests to pause
or shutdown.

 Now, let’s look at the action of the StockTickerSourceTask.poll method. We
will view the code in sections to ensure we fully understand what is going on with the
polling logic. 

public List<SourceRecord> poll() throws InterruptedException {
    final long nextUpdate = lastUpdate.get() + timeBetweenPoll; 
    final long now = sourceTime.milliseconds();     
    final long sleepMs = nextUpdate - now; 

    if (sleepMs > 0) {
        LOG.trace("Waiting {} ms to poll API feed next", sleepMs);
        sourceTime.sleep(sleepMs);
    }

At the very top of the method, we calculate the time our next API call should occur;
remember, we want to stay within the limit of calls we can make to the service. If the
current time is less than our last call, plus the interval we want between calls, we’ll
have the polling thread sleep.

 Now, once the wait time passes, the next part of the method that executes is the
core logic of retrieving the stock results (some details are omitted for clarity).

HttpRequest request = HttpRequest.newBuilder()  
                .uri(uri)

Listing 5.7 Start of the poll method for the source task

Listing 5.8 Core polling logic
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                .GET()
                .headers("Content-Type", "text/plain;charset=UTF-8")
                .build();
HttpResponse<String> response;

try {
    response = httpClient.send(request,
                  HttpResponse.BodyHandlers.ofString()); 
    AtomicLong counter = new AtomicLong(0);
    JsonNode apiResult = objectMapper.readTree(response.body()); 
    ArrayNode tickerResults = (ArrayNode) apiResult.get(resultNode);
    LOG.debug("Retrieved {} records", tickerResults.size());
    Stream<JsonNode> stockRecordStream =
              StreamSupport.stream(tickerResults.spliterator(), false);

    List<SourceRecord> sourceRecords = stockRecordStream.map(entry -> {  
        Map<String, String> sourcePartition =
              Collections.singletonMap("API", apiUrl);
        Map<String, Long> sourceOffset =
              Collections.singletonMap("index", counter.getAndIncrement());
       Schema schema = getValueSchema(entry);  
       Map<String, Object> resultsMap = toMap(entry); 
       return new SourceRecord(sourcePartition,
                               sourceOffset,
                               topic,
                               null,
                               schema,
                               toStruct(schema, resultsMap)); 

    }).toList();

    lastUpdate.set(sourceTime.milliseconds()); 

   return sourceRecords; 
 }

The logic for the polling is clear. You create an HttpRequest object and then submit it
to the ticker API endpoint; then, you read the string response body that the API end-
point returns. The results are JSON, with the ticker symbol information in a nested
array. You extract the array and flatten the results, mapping each to a SourceRecord so
that each entry will become a record sent to Kafka. 

 There’s one part of this conversion that we need to cover here. The SourceRecord
constructor accepts two parameters, a source partition and a source offset, both repre-
sented by a Map instance. The notion of a source partition and offset might seem a bit
out of context, considering the source for a SourceConnector will not be Kafka. How-
ever, the concept of a source partition indicates a general location description of
where the connector sources the data—a database table name, file name, or, in our
case, the API URL. We build the schema for the record returned from the ticker API
call. Then, you convert the JSON record into a Map. We need to do these two steps to

Sends the request for
stock ticker results

Converts the returned 
JSON into a JsonNode

Maps each of the returned 
JSON ticker results into a 
SourceRecord

Creates the schema 
of the ticker record

Converts the JSON 
record to a Map

Builds a Struct for
the SourceRecord

value

Sets the last
update timestamp

Returns the
SourceRecord toList



150 CHAPTER 5 Kafka Connect
create a Struct for the value of the SourceRecord. Additionally, we pass in the gener-
ated schema to the SourceRecord instance, which may end up in the Kafka topic if
you’ve configured the connector to include the schema. 

 With that generalized definition of a source partition, the source offset is the posi-
tion of the individual record in the retrieved result. If you remember, in Kafka, a con-
sumer commits the offset of the last fully consumed record, so if it shuts down for any
reason, it can resume operations from that committed offset.

 Earlier in the section, your custom connector instance used a monitorThread vari-
able to get the list of ticker symbols to track. In the next section, I’ll explain this variable
and why the connector is using it. 

5.6.2 Making your connector dynamic with a monitoring thread

In this connector example, assuming the list of ticker symbols is static would be rea-
sonable. But what if you wanted or needed to change them? Of course, you can use
the Connect REST API to update the configurations, but that means you must keep
track of any changes and manually update the connector. But you can provide a mon-
itoring thread with your custom connector to keep track of any changes and update
the connector tasks automatically. 

 To be clear, a monitoring thread is not unique to the connector; you’ll implement
a class that extends a regular java.lang.Thread class. Conceptually, you’ll start the
thread when your connector starts, and it will contain the logic needed to check for
any changes and reconfigure the connector tasks. 

 Imagine you have a separate microservice that handles which information to
include in the source connector configuration. The microservice returns a comma-
separated list of the ticker symbols. So you’ll need your monitoring thread to peri-
odically issue an HttpRequest to the service and compare the response against the
current list of symbols. If there’s a change, it will trigger a reconfiguration of the con-
nector tasks. A better example of why you’d want to use a monitoring thread is the
JDBC connector. You can use the JDBC connector to import an entire relational data-
base, possibly consisting of many tables. In any organization, a relational database is
not a static resource; it will change. So you’ll want to automatically pick up those
changes to ensure the connector is importing the latest data into Kafka. 

 Let’s start the monitoring thread analysis by looking at the class declaration and
constructor.

public StockTickerSourceConnectorMonitorThread(
  final ConnectorContext connectorContext,  
  final int monitorThreadCheckInterval, 
  final HttpClient httpClient,

Listing 5.9 Class declaration and constructor of monitoring thread
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  final String serviceUrl) {  
        this.connectorContext = connectorContext;
        this.monitorThreadCheckInterval = monitorThreadCheckInterval;
        this.httpClient = httpClient;
        this.serviceUrl = serviceUrl;
    }

The constructor parameters are self-explanatory, but ConnectorContext deserves a
quick discussion. Any class extending the abstract Connector class will have access to
the ConnectorContext, so you don’t need to be concerned about where it comes
from. You’ll use it to interact with the connect runtime, requesting task reconfigura-
tion when the source changes. 

 Now, for the behavior of the monitoring thread, you’ll override the Thread.run()
method and provide the logic you want to execute should there be any relevant
changes, as in the following listing (some details are omitted for clarity). 

public void run() {
 while (shutDownLatch.getCount() > 0) {  
   try {
        if (updatedSymbols()) { 

           connectorContext.requestTaskReconfiguration(); 
        }
 boolean isShutdown = shutDownLatch.await(monitorThreadCheckInterval,  
                                      TimeUnit.MILLISECONDS);
 if (isShutdown) { 
      return;
 }
  ....

All the StockTickerSourceConnectorMonitorThread does is check whether the stock
symbols have changed and, if they have, request a configuration change for the con-
nector task(s). After checking for changes, the shutDownLatch waits for the desig-
nated time specified by the monitorThreadCheckInterval instance variable set when
the connector created the thread. If the shutDownLatch counts down while waiting,
the isShutdown variable returns true, and the monitoring thread stops running. Oth-
erwise, it continues to monitor for changes. 

NOTE The CountDownLatch is a class from the java.util.concurrent pack-
age and is a synchronization tool that allows you to have one or more threads
wait until a particular condition. I won’t go into any more details here, but
consult the Javadoc for a full explanation (http://mng.bz/j1N8). 

Listing 5.10 Overridden run method of the monitoring thread
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To conclude the discussion on the monitoring thread, let’s quickly review how it
determines whether there are any changes (some details are omitted for clarity).

List<String> maybeNewSymbols = symbols(); 
 boolean foundNewSymbols = false;
 if (!Objects.equals(maybeNewSymbols, this.tickerSymbols)) { 
     tickerSymbols = new ArrayList<>(maybeNewSymbols); 
     foundNewSymbols = true;
}
return foundNewSymbols;

To determine whether there are changes, the symbols() method issues an Http-
Request to the microservice and returns a List<String> contained in the response. If
the retrieved list’s contents differ from the current one, we update the instance list
and set the foundNewSymbols Boolean to true, which triggers a reconfiguration of the
task when the method returns. 

 So this wraps up our coverage of the custom SourceConnector; the code presented
here isn’t production-ready, but it gives you a good understanding of how you would
implement your connector. There are instructions in the book’s source code that
describe how to run this custom connector locally with a Docker image.

 The API returns a rich set of fields for the stock ticker symbol, but you may only
interested in storing a subset of those fields in Kafka. Of course, you could extract the
fields of interest right at the source when the connector task retrieves the API results,
but if you switched API services with a different JSON constructor, it would mean
you’d need to change the logic of your connector. A better approach would be to use
a transform to extract the fields you need before the records make it to Kafka. You’ll
need a custom transformation to take arbitrary fields from a JSON object and return
one with just those fields, and that’s what we will cover in the next section: creating a
custom transformation. 

5.6.3 Creating a custom transformation

Although Kafka Connect provides several transformations out of the box, those trans-
formations may not handle every case. While the need for a custom connector is less
likely due to the number of connectors available for popular external systems, it’s
more likely that you’ll need to write a custom transformation. 

 The stock API feed we used for our custom connector produces a result containing
70+ fields of different metrics for each stock symbol. While each is useful, we only
want to keep a fraction—5 or 6 at most. So, you will create a transformation that keeps
only the fields you specify via a configured comma-separated list of field names.

 To complete the transformation, you will implement the Transformation inter-
face. There are a few methods on the interface you’ll need to implement, but we’ll
focus on one in particular, the apply method, as that’s where all the action of drop-
ping the fields you’re not interested in happens. 

Listing 5.11 Logic used to detect changes to symbols
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 But implementing a Transformation object has a bit of a twist. If you remember
earlier in the chapter, when you launch a connector, one of the configurations you set
specifies whether you want to include the schema for each record. So, you’ll need to
consider that when implementing your custom SMT. We’ll see how this works in the
upcoming section. Additionally, you’ll need to allow a user to apply this transforma-
tion to the key or the value, and you’ll see how we handle that. 

 Let’s get into the implementation of the Transformation now (some details are
omitted for clarity).

public abstract class MultiFieldExtract<R extends ConnectRecord<R>>  
                                       implements Transformation<R> {

 @Override
public R apply(R connectRecord) {     
  if (operatingValue(connectRecord) == null) {  
    return connectRecord;
  } else if (operatingSchema(connectRecord) == null) { 
    return applySchemaless(connectRecord);
  } else {
    return applyWithSchema(connectRecord); 
  }
}

You’ll probably notice that our Transformation implementation is an abstract class. If
you go back to section 5.3, you’ll remember when you configured SMTs, you needed to
specify that the transform was either for the key or the value with a configuration like
MaskField$Value(in Java, the $ indicates an inner class). So, you declare the transfor-
mation class as abstract since it will have, by convention, three abstract methods: oper-
atingSchema, operatingValue, and newRecord. You’ll implement these methods with
two inner classes, Key and Value, representing the transformation for the respective
part of the Connect record. We won’t go into any more details here, so we can continue
moving forward and discuss the action in the apply method. 

 You’ll see the simplest case in listing 5.12: the Connect record’s underlying value is
null. Remember, in Kafka, it’s acceptable to have a null key or value. Keys are
optional, and with compacted topics, a null value represents a tombstone and indi-
cates to the log cleaner to delete the record from the topic. For the rest of this section,
I will assume that we’re only working with values.

 Next, we check whether the record has an embedded schema. Again, in section 5.2,
we discussed the value.converter.schemas.enable configuration, which, if enabled,
embeds the schema for each record coming through the connector. If this branch evalu-
ates to true, we’ll use the applySchemaless method to complete the transformation. 

Listing 5.12 Implementation of the custom transformation
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private R applySchemaless(R connectRecord) {
    final Map<String, Object> originalRecord =
                requireMap(operatingValue(connectRecord), PURPOSE);
    final Map<String, Object> newRecord = new LinkedHashMap<>();
    List<Map.Entry<String,Object>> filteredEntryList =
      originalRecord.entrySet().stream()
      .filter(entry -> fieldNamesToExtract.contains(entry.getKey()))
      .toList();

    filteredEntryList.forEach(entry -> newRecord.put(entry.getKey(),
                                                 entry.getValue()));
    return newRecord(connectRecord, null, newRecord);
    }

Since there’s no schema, we can create a Map with String keys (for the field name)
and Object for the values for the current record. Then, you create an empty map for
the new record and filter the existing records by checking whether the list of config-
ured field names contains it. If it is in the list, the key and value are placed in the map,
representing the new record. If the record does have a schema, we follow a very simi-
lar process, but we first have to adjust the schema only to contain the fields we’re
interested in keeping.

private R applyWithSchema(R connectRecord) {
final Struct value =
       requireStruct(operatingValue(connectRecord), PURPOSE);

Schema updatedSchema = schemaUpdateCache.get(value.schema());
if(updatedSchema == null) {
    updatedSchema = makeUpdatedSchema(value.schema());
    schemaUpdateCache.put(value.schema(), updatedSchema);
}
final Struct updatedValue = new Struct(updatedSchema);

updatedValue.schema().fields()
.forEach(field -> updatedValue.put(field.name(),
                                  value.get(field.name())));
return newRecord(connectRecord, updatedSchema, updatedValue);
}

Here, with the schema-record combo, we first need to get a Struct, which is very simi-
lar to the HashMap in the schemaless version, but it contains all the type information
for the fields in the record. First, we check whether we’ve already created an updated
schema; if not, we make it and store it in a cache. Once we’ve created the updated
schema, there’s no need to create another one since the structure for all records will
be the same. Then, we iterate over the field names of our updated schema, using each
one to extract the value from the old record.

Listing 5.13 Transforming without a schema

Listing 5.14 Transforming with a schema
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 You now know how to implement your custom connect Transformation. I’ve
not covered all the details here, so consult the source code in bbejeck.chapter_5
.transformer.MultiFieldExtract for all the details.

 I want to close this chapter on Kafka Connect by saying the custom Connector and
Transformation you’ve created here aren’t for production use. They are teaching
tools on how you can create custom variations of those two classes when the ones pro-
vided by Kafka Connect won’t fit your needs. 

Summary
 Kafka Connect is the lynchpin in moving data from an external system into

Kafka and from Kafka out into an external system. This ability to move data in
and out of Kafka is critical for getting existing applications outside of Kafka
involved in an event streaming platform.

 Using an existing connector doesn’t require any code. You upload some JSON
configurations to get it up and running. There are hundreds of existing connec-
tors, so there’s usually one already developed that you can use out of the box.

 The Connect framework also provides a Single Message Transform (SMT) that
can apply lightweight changes to incoming or outgoing records.

 You can implement your own connector if the existing connectors or transfor-
mations don’t do what you need them to do.





Part 3 

In part 3, you’ll go deep into Kafka Streams. Armed with the knowledge you 
gained in the first two parts, you’re primed to hit the ground running as you’ll 
understand how Kafka works at this point.

 You’ll explore and learn the Kafka Streams DSL layer and fully appreciate 
what types of event-streaming applications you can create. You’ll start with a sim-
ple “Hello World” application in Kafka Streams. From there, you’ll quickly move 
on to a more practical example involving a fictional retail store. But you will con-
tinue there; from starting with the more straightforward DSL applications, you’ll 
move on to more features, such as using state in a Kafka Streams application. 
You’ll need to use state whenever you need to “remember” something from pre-
vious events. From there, the next stop on your learning journey is the KTable
API, where a KStream is an event stream and a KTable is an update stream where 
records with the same key are updated to previous ones. Then, you’ll move on to 
a concept that goes hand in hand with stateful operations—windowing. Where 
stateful operations on their own will continue to grow in size over time, window-
ing allows you to put events into discrete time “buckets,” breaking the state up 
into more analyzable chunks by time.

 But as with any well-designed abstraction, there will be times when the Kafka 
Streams DSL won’t provide the exact thing you’ll need to get the job done, and 
that’s precisely where the Kafka Streams Processor API comes in handy. You will 
learn about the Processor API. While it takes more work to build an application, 
it gives you complete control, allowing you to meet any need in creating an 
event-streaming application.
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 Then, your learning goes beyond Kafka Streams as you get into ksqlDB, which 
allows you to develop event-streaming applications using familiar SQL. From ksqlDB, 
you get into integration with Spring. Spring is a widely used framework that is highly 
popular with developers as it facilitates building more modular and testable applica-
tions. Then, you’ll apply what you’ve learned about Spring to one of Kafka Stream’s 
most unique features—creating an interactive query service.

 Finally, you’ll wrap up your experience by learning how to test not only Kafka 
Streams applications but all of the different parts of the Kafka ecosystem you learned 
in this book. But there is more information in this book. Some additional topics 
would be helpful to you in developing event-streaming applications with Kafka and 
Kafka Streams. While the information is useful, it’s optional when building your 
streaming software. So, four appendixes contain this useful but optional information:

■ Appendix A contains a workshop on Schema Registry to get hands-on experi-
ence with the different schema compatibility modes.

■ Appendix B presents information on using Confluent Cloud to help develop 
your event streaming applications.

■ Appendix C is a survey of working with the different schema types Avro, Proto-
buf, and JSON Schema.

■ Appendix D covers the architecture and internals of Kafka Streams.



Developing
Kafka Streams
A Kafka Streams application is a graph of processing nodes transforming event data
as it streams through each node. In this chapter, you’ll learn how to build a graph
that makes up a stream processing application with Kafka Streams.

6.1 A look at Kafka Streams
Let’s take a look at an illustration of what this means in figure 6.1. This illustration
represents the generic structure of most Kafka Streams applications. There is a
source node that consumes event records from a Kafka broker. There are any num-
ber of processing nodes, each performing a distinct task, and, finally, a sink node
producing transformed records back out to Kafka. In chapter 4, we discussed how
to use the Kafka clients to produce and consume records with Kafka. Much of what
you learned in that chapter applies to Kafka Streams because, at its heart, Kafka

This chapter covers
 Introducing the Kafka Streams API

 Building our first Kafka Streams application

 Working with customer data and creating more 
complex applications

 Splitting, merging, and branching streams
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Streams is an abstraction over the producers and consumers, leaving you free to focus
on your stream-processing requirements.

NOTE While Kafka Streams is the native stream processing library for Apache
Kafka, it does not run inside the cluster or brokers but connects as a client
application. 

6.2 Kafka Streams DSL
The Kafka Streams DSL is the high-level API enabling you to build Kafka Streams
applications quickly. This API is very well thought out, with methods to handle most
stream-processing needs out of the box to create a sophisticated stream-processing
program without much effort. At the heart of the high-level API is the KStream object,
which represents the streaming key-value pair records.

 Most of the methods in the Kafka Streams DSL return a reference to a KStream
object, allowing for a fluent interface style of programming. Most KStream methods
also accept single-method interfaces, allowing for the liberal use of lambda expres-
sions, which speeds up your development. Considering these factors, you can imagine
the simplicity and ease of building a Kafka Streams program.

 There’s also a lower-level API, the Processor API, which isn’t as concise as the Kafka
Streams DSL but allows for more control. We’ll cover the Processor API in chapter 10.
With that introduction, let’s dive into the Hello World program for Kafka Streams.

6.3 Hello World for Kafka Streams
For the first Kafka Streams example, we’ll build something fun that will get off the
ground quickly so you can see how Kafka Streams works: a toy application that takes
incoming messages and converts them to uppercase characters, effectively yelling at
anyone who reads the message. We’ll call this the Yelling app. Before diving into the
code, let’s take a look at the processing topology you’ll assemble for this application
in figure 6.2. 

 As you can see, it’s a simple processing graph—so simple that it resembles a linked
list of nodes more than the typical tree-like structure of a graph. But there’s enough

Source node Sink node

Topologies
can be simple
or complex with
several branches.

Represents N amount of processors

Figure 6.1 Kafka Streams is a 
graph with a source node, any 
number of processing nodes, 
and a sink node.
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here to give you substantial clues about what to expect in the code. There will be a
source node, a processor node transforming incoming text to uppercase, and a sink
processor writing results to a topic.

 This is a trivial example, but the code shown here represents what you’ll see in
other Kafka Streams programs. In most of the examples, you’ll see a similar pattern:

1 Defining the configuration items
2 Creating Serde instances, either custom or predefined, used in the deserializa-

tion/serialization of records
3 Building the processor topology
4 Creating and starting Kafka Streams

When we get into the more advanced examples, the principal difference will be in
the complexity of the processor topology. With all this in mind, it’s time to build
your first application.

6.3.1 Creating the topology for the Yelling app

The first step to creating any Kafka Streams application is to create a source node,
which you will do here. The source node is the root of the topology and forwards
the consumed records into the application. Figure 6.3 highlights the source node in
the graph. 

 The code in listing 6.1 creates the graph’s source, or parent, node.

SRC-TOPIC

OUT-TOPIC

Source and sink topics
are on the Kafka brokers.

Source
processor

Sink
processor

UpperCase
processor

Source processor
forwards the consumed

records into the UpperCase
processor.

The UpperCase processor
creates an uppercased
version of the original

record value - it forwards
results to the sink processor.

The sink processor produces
records back to a specified

Kafka topic.

Figure 6.2 Topology of the Yelling app
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KStream<String, String> simpleFirstStream = builder.stream("src-topic",
Consumed.with(Serdes.String(), Serdes.String()));

You’ve configured the simpleFirstStream instance to consume messages from the
src-topic topic. In addition to specifying the topic name, you can add a Consumed
object that Kafka Streams uses to configure optional parameters for a source node. In
this example, you’ve provided Serde instances, the first for the key and the second for
the value. A Serde is a wrapper object that contains a serializer and deserializer for a
given type. 

 Based on our discussion on consumer clients in a previous chapter, the broker
stores and forwards records in byte array format. For Kafka Streams to perform any
work, it must deserialize the bytes into concrete objects. Here, both Serde objects are
for strings since that’s the key type and value type. Kafka Streams will use the Serde to
deserialize the key and value into string objects. We’ll explain Serdes in more detail
soon. You can also use the Consumed class to configure a TimestampExtractor, the off-
set reset for the source node, and provide a name for the operator. We’ll cover the
TimestampExtractor in chapter 9. Since we covered offset resets in chapter 2, I won’t
cover them again here. 

 That is how to create a KStream to read from a Kafka topic. But a single topic is not
our only choice. Let’s take a quick look at some other options. Let’s say that there are
several topics you’d like to “yell at.” In that case, you can subscribe to all of them at

Listing 6.1 Defining the source for the stream

SRC-TOPIC

Source
processor

<key, "eat more chicken"> ,
<key,"hurry up there">

Key-value records consumed
from the topic(s) named

when creating the source node

KStream<String, String> simpleFirstStream =
builder.stream("src-topic",

Consumed.with(Serdes.String(), Serdes.String()));

Figure 6.3 Creating the source node of the Yelling app
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one time using a Collection<String> to specify all the topic names as shown in the
following listing. 

KStream<String, String> simpleFirstStream =
  builder.stream(List.of("topicA", "topicB", "topicC"),
        Consumed.with(Serdes.String(), Serdes.String()))

Typically, you’d use this approach when you want to apply the same processing to mul-
tiple topics simultaneously. But what if you have a long list of similarly named topics?
Do you have to write them all out? The answer is no! You can use a regular expression
to subscribe to any topic that matches the pattern.

KStream<String, String> simpleFirstStream =
   buider.source(Pattern.compile("topic[A-C]"),
      Consumed.with(Serdes.String(), Serdes.String()))

A regular expression for subscribing to topics is convenient when your organization
uses a standard topic naming pattern related to its business function. You have to
know the naming pattern, and you can subscribe to all of them concisely. Additionally,
as topics are created or deleted, your subscription will automatically update to reflect
the changes in the topics.

 When subscribing to multiple topics, there are a few caveats to remember. The
keys and values from all subscribed topics must be the same type; for example, you
can’t combine topics where one topic contains Integer keys and another has String
keys. Also, if they contain a different number of partitions, it’s up to you to repartition
the data before performing any key-based operation like aggregations. We’ll cover
repartitioning in the next chapter. Finally, there are no ordering guarantees for the
incoming records.

TIP I emphasize that Kafka only guarantees order within a partition of a sin-
gle topic. So, if you’re consuming from multiple topics in your Kafka Streams
application, there’s no guarantee of the order of the records consumed.

You now have a source node for your application, but you must attach a processing
node to use the data, as shown in figure 6.4.

 Here’s the code you’ll use to change the incoming text to uppercase:

KStream<String, String> upperCasedStream =
  simpleFirstStream.mapValues(value -> value.toUpperCase());

In the introduction to this chapter, I mentioned that a Kafka Streams application is a
graph of processing nodes—a directed acyclic graph (DAG), to be precise. You build

Listing 6.2 Creating the Yelling app with multiple topics as the source

Listing 6.3 Using a regular expression to subscribe to topics in the Yelling app

Listing 6.4 Mapping incoming text to uppercase
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the graph one processor at a time. You establish a parent–child relationship between the
graph nodes with each method call. The parent–child relationship in Kafka Streams sets
the direction for the data flow; parent nodes forward records to the child node(s). 

 So, looking at the code example here, by executing simpleFirstStream.mapValues,
you’re creating a new processing node whose inputs are the records consumed in the
source node. So the source node is the parent, and it forwards records to its child, the
processing node returned from the mapValues operation. 

NOTE As you can tell from the name, mapValues only affects the key-value
pair’s value, but the original record’s key is still forwarded along.

The mapValues() method takes an instance of the ValueMapper<V, V1> interface. The
ValueMapper interface defines only one method, ValueMapper.apply, making it an
ideal candidate for using a lambda expression, which is what you’ve done here with
value -> value.toUpperCase(). 

NOTE Many tutorials are available for lambda expressions and method refer-
ences. You will find good starting points in Oracle’s Java documentation:
“Lambda Expressions” (http://mng.bz/J0Xm) and “Method References”
(http://mng.bz/BaDW).

So far, your Kafka Streams application is consuming records and transforming them
to uppercase. The final step is adding a sink processor that writes the results to a topic.
Figure 6.5 shows where you are in the construction of the topology.

 The code in listing 6.5 adds the last processor in the graph.

UpperCase
processor

Key-value records forwarded from the
source node

<key, "eat more chicken"> ,
<key,"hurry up there">,,

.....

KStream<String, String> simpleFirstStream =
simpleFirstStream.mapValues(value -> value.toUpperCase());

<key, "EAT MORE CHICKEN">
<key,"HURRY UP THERE">,

.....

Figure 6.4 Adding the uppercase processor to the Yelling app

http://mng.bz/J0Xm
http://mng.bz/BaDW
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upperCasedStream.to("out-topic",
               Produced.with(Serdes.String(), Serdes.String()));

The KStream.to method creates a processing node that writes the final transformed
records to a Kafka topic. It is a child of the upperCasedStream, so it receives all of its
inputs directly from the results of the mapValues operation. 

 Again, you provide Serde instances, this time for serializing records written to a Kafka
topic. But in this case, you use a Produced instance, which provides optional parameters
for creating a sink node in Kafka Streams. The Produced configuration object also allows
you to provide a custom StreamPartitioner. We covered the concept of custom parti-
tioning in chapter 4, section 4.2.4, so I won’t review that here. You can see an example of
using a StreamPartitioner in chapter 9, towards the end of section 9.1.6. 

NOTE You don’t always have to provide Serde objects to either the Consumed
or Produced objects. If you don’t, the application will use the serializer/
deserializer listed in the configuration. Additionally, with the Consumed and
Produced classes, you can specify a Serde for either the key or value only.

The preceding example uses three lines of code to build the topology:

KStream<String,String> simpleFirstStream =
   builder.stream("src-topic",
     Consumed.with(Serdes.String(), Serdes.String()));

Listing 6.5 Creating a sink node

Sink
processor

Key-value records forwarded from the
UpperCase processor

<key, "EAT MORE CHICKEN">
<key,"HURRY UP THERE">,

.....

Out-Topic

upperCasedStream.to("out-topic",
Produced.with(Serdes.String(),

Serdes.String()));

Figure 6.5 Adding a processor for writing the Yelling app results
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KStream<String, String> upperCasedStream =
    simpleFirstStream.mapValues(value -> value.toUpperCase());

upperCasedStream.to("out-topic",
      Produced.with(Serdes.String(), Serdes.String()));

Each step in the code demonstrates a different stage of the building process. But all
methods in the KStream API that don’t create terminal nodes (methods with a return
type of void) return a new KStream instance, which allows you to use the fluent
interface style of programming. A fluent interface (https://martinfowler.com/bliki/
FluentInterface.html) is an approach where you chain method calls together for
more concise and readable code. To demonstrate this idea, here’s another way you
could construct the Yelling app topology:

builder.stream("src-topic", Consumed.with(Serdes.String(), Serdes.String()))
 .mapValues(value -> value.toUpperCase())
 .to("out-topic", Produced.with(Serdes.String(), Serdes.String()));

Method chaining shortens the program from three statements to one without losing
clarity or purpose. From this point forward, you’ll see all the examples using the flu-
ent interface style unless doing so causes the clarity of the program to suffer.

TIP Starting a Kafka Streams application requires a running Kafka broker.
Using Docker is a very convenient way to run Kafka locally. The source code
includes docker-compose.yml. To start Kafka, use this command: docker
compose up -d.

You’ve built your first Kafka Streams topology, but we glossed over the essential config-
uration steps and Serde creation. We’ll look at those now. 

6.3.2 Kafka Streams configuration

Kafka Streams is highly configurable and has several properties you can adjust for
your specific needs. Here, you only see the two required configuration settings,
APPLICATION_ID_CONFIG and BOOTSTRAP_SERVERS_CONFIG:

props.put(StreamsConfig.APPLICATION_ID_CONFIG, "yelling_app_id");
props.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");

Both are required because there’s no practical way to provide default values for these
configurations. Attempting to start a Kafka Streams program without these two prop-
erties defined will result in a ConfigException being thrown. 

 The StreamsConfig.APPLICATION_ID_CONFIG property uniquely identifies your
Kafka Streams application. Kafka Streams instances with the same application.id
are considered one logical application. The book covers this concept in appendix D.
application.id also serves as a prefix for the embedded client (KafkaConsumer
and KafkaProducer) configurations. You can provide custom configurations for the

https://martinfowler.com/bliki/FluentInterface.html
https://martinfowler.com/bliki/FluentInterface.html
https://martinfowler.com/bliki/FluentInterface.html
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embedded clients using one of the various prefix labels in the StreamsConfig class.
However, the default client configurations in Kafka Streams are chosen to provide the
best performance, so you should exercise caution when adjusting them. 

 The StreamsConfig.BOOTSTRAP_SERVERS_CONFIG property can be a single host-
name:port pair or multiple hostname:port comma-separated pairs. BOOTSTRAP_
SERVERS_CONFIG is what Kafka Streams uses to establish a connection to the Kafka
cluster. We’ll cover several more configuration items as we explore more examples in
the book. 

6.3.3 Serde creation

In Kafka Streams, the Serdes class provides convenience methods for creating Serde
instances, as shown here:

Serde<String> stringSerde = Serdes.String();

You create the Serde instance required for serialization/deserialization using the
Serdes class in this line. Here, you create a variable to reference the Serde for
repeated use in the topology. The Serdes class provides default implementations for
the following types: String, ByteArray, Bytes, Long, Short, Integer, Double, Float,
ByteBuffer, UUID, and Void. 

 Implementations of the Serde interface are advantageous because they contain the
serializer and deserializer, which keeps you from having to specify four parameters
(key serializer, value serializer, key deserializer, and value deserializer) every time you
need to provide a Serde in a KStream method. In upcoming examples, you’ll use Ser-
des to work with Avro, Protobuf, and JSON Schema and create a Serde implementa-
tion to handle serialization/deserialization of more complex types.

 Let’s take a look at the whole program you just put together (some details are
omitted for clarity). You can find the source in src/main/java/bbejeck/chapter_6/
KafkaStreamsYellingApp.java (located at https://github.com/bbejeck/KafkaStreams
InAction2ndEdition).

public class KafkaStreamsYellingApp extends BaseStreamsApplication {

private static final Logger LOG =
  LoggerFactory.getLogger(KafkaStreamsYellingApp.class);

@Override
public Topology topology(Properties streamProperties) {

  Serde<String> stringSerde = Serdes.String(); 
  StreamsBuilder builder = new StreamsBuilder(); 

Listing 6.6 Hello World: The Yelling app

Creates the Serdes and 
stores in a variable used 
to serialize/deserialize 
keys and valuesCreates the StreamsBuilder instance used 

to construct the processor topology

https://github.com/bbejeck/KafkaStreamsInAction2ndEdition
https://github.com/bbejeck/KafkaStreamsInAction2ndEdition
https://github.com/bbejeck/KafkaStreamsInAction2ndEdition
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  KStream<String, String> simpleFirstStream = builder.stream("src-topic",
            Consumed.with(stringSerde, stringSerde)); 
  KStream<String, String> upperCasedStream =
  simpleFirstStream.mapValues(value-> value.toUpperCase()); 

  upperCasedStream.to("out-topic",
      Produced.with(stringSerde, stringSerde)); 

  return builder.build(streamProperties);
}

public static void main(String[] args) throws Exception {
    Properties streamProperties = new Properties();
    streamProperties.put(StreamsConfig.APPLICATION_ID_CONFIG,
      "yelling_app_id");
    streamProperties.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG,
      "localhost:9092");
    KafkaStreamsYellingApp yellingApp = new KafkaStreamsYellingApp();
    Topology topology = yellingApp.topology(streamProperties);

    try(KafkaStreams kafkaStreams =
                    new KafkaStreams(topology, streamProperties)) {
        LOG.info("Hello World Yelling App Started");
        kafkaStreams.start(); 

        LOG.info("Shutting down the Yelling APP now");
    }
 }
}

You’ve now constructed your first Kafka Streams application. Let’s quickly review the steps
involved, as it’s a general pattern you’ll see in most of your Kafka Streams applications:

1 Create a Properties instance for configurations.
2 Create a Serde object.
3 Construct a processing topology.
4 Start the Kafka Streams program.

We’ll now move on to a more complex example that will allow us to explore more of
the Streams DSL API. 

6.4 Masking credit card numbers and tracking purchase 
rewards in a retail sales setting
Imagine you work as an infrastructure engineer for the retail giant ZMart. ZMart has
adopted Kafka as its data processing backbone and is looking to capitalize on its ability
to process customer data quickly, which will help ZMart do business more efficiently. 

 At this point, your boss tasked you with building a Kafka Streams application to
work with purchase records as they come streaming in from transactions in ZMart

Creates the actual stream with a source topic 
to read from (the parent node in the graph)

A processor 
using a lambda 
(the first child 
node in the 
graph)

Writes the 
transformed output 
to another topic 
(the sink node in 
the graph)

Kicks off the Kafka 
Streams threads
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stores. Figure 6.6 shows the requirements for the streaming program and serves as a
good description of what the program will do.

The requirements are as follows:

1 All Purchase objects need to have credit card numbers protected, in this case by
masking the first 12 digits.

2 You must extract the items purchased and the zip code to determine regional
purchase patterns and inventory control. This data will be written out to a topic.

3 You must capture the customer’s ZMart member number and the amount spent
and write this information to a topic. Consumers of the topic will use this data
to determine rewards.

With these requirements, let’s start building a streaming application that will satisfy
ZMart’s business requirements.

6.4.1 Building the source node and the masking processor

The first step in building the new application is to create the source node and first
processor of the topology. You’ll do this by chaining together two calls to the KStream
API. The child processor of the source node will mask credit card numbers to protect
customer privacy. 

KStream<String, RetailPurchase> retailPurchaseKStream =
     streamsBuilder.stream("transactions",
     Consumed.with(stringSerde, retailPurchaseSerde))
    .mapValues(creditCardMapper);

You create the source node with a call to the StreamBuilder.stream method using a
default String Serde, a custom Serde for RetailPurchase objects, and the name of

Listing 6.7 Building the source node and first processor

Credit card masking

Extract items purchased and Zip code

Produced to topic

Extract ZMart number and total $$$ spent

Produced to topic

Figure 6.6 Diagram of the new requirements for the ZMart application
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the topic that’s the source of the messages for the stream. In this case, you only specify
one topic, but you could have provided a comma-separated list of names or a regular
expression to match topic names instead. 

 You provide Serdes in this code example with a Consumed instance. Still, you could
have left that out, only given the topic name, and relied on the default Serdes pro-
vided via configuration parameters.

 The next immediate call is to the KStream.mapValues method, taking a Value-
Mapper<V, V1> instance as a parameter. Value mappers take a single parameter of one
type (a RetailPurchase object, in this case) and map that object to a new value, possi-
bly of another type. In this example, KStream.mapValues returns an object of the
same type (RetailPurchase) but with a masked credit card number. 

 When using the KStream.mapValues method, you don’t have access to the key for the
value computation. If you wanted to use the key to compute the new value, you could use
the ValueMapperWithKey<K, V, VR> interface, with the expectation that the key remains
the same. If you need to generate a new key along with the value, use the KStream.map
method that takes a KeyValueMapper<K, V, KeyValue<K1, V1>> interface. Let’s take a
quick look at an example for both of these, starting with the ValueMapperWithKey. 

public class RetailValueMapperWithKey implements
  ValueMapperWithKey<String,RetailPurchase,RetailPurchase> {
@Override
public RetailPurchase apply(String customerIdKey,
                           RetailPurchase value) {
    RetailPurchase.Builder builder = value.toBuilder();
    if(customerIdKey != null && customerIdKey.endsWith("333")){
        builder.setCreditCardNumber("0000000000");
        builder.setCustomerId("000000000");
    }
    return builder.build();
    }
}

ValueMapperWithKey operates the same way as ValueMapper, except you can access
the key to help you with the value transformation. Here, we’re assuming the key is the
customer ID, and if it ends with a "333", this means it was a corporate shopping “spy,”
and we can strip away the customer details from the purchase. The method returns
the updated RetailPurchase object when the transformation is complete.

 For a KeyValueMapper, you follow the same process, but you can change the key as
well, as you’ll see in the next listing.

public class RetailKeyValueMapper implements
    KeyValueMapper<String, RetailPurchase,
                           KeyValue<String, RetailPurchase>> {

Listing 6.8 ValueMapperWithKey

Listing 6.9 KeyValueMapper

The apply method 
applying the 
desired changes 
to the value only 
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@Override
public KeyValue<String, RetailPurchase> apply(String key,
                                    RetailPurchase value) {
    RetailPurchase.Builder builder = RetailPurchase.newBuilder();
    if(key != null && key.endsWith("333")){  
        builder.setCreditCardNumber("0000000000");
        builder.setCustomerId("000000000");
    }
  return KeyValue.pair(value.getStoreId(), builder.build());
 }
}

Here, KeyValueMapper accepts the key and value as parameters, just as ValueMapper-
WithKey does. Still, it returns a KeyValue instead of just the value, meaning you can
change the key to a new value. Sometimes, you may need to add a key (which still
requires using the KeyValueMapper interface) or change the existing key when you want
to perform an aggregation, which requires grouping records by key. In chapter 7, we’ll
cover aggregations and the impact of changing keys with stateful operations. 

NOTE Keep in mind that Kafka Streams expects functions to operate without
side effects, meaning the functions don’t modify the original key and/or
value but return new objects when making modifications.

6.4.2 Adding the purchase-patterns processor

Now, you’ll build the second processor, which is responsible for extracting geographi-
cal data from the purchase, which ZMart can use to determine purchase patterns and
inventory control in regions of the country. There’s also an additional wrinkle with
building this part of the topology. The ZMart business analysts have determined they
want to see individual records for each item in a purchase and consider purchases
made regionally together. 

 The RetailPurchase data model object contains all the items in a customer pur-
chase, so you’ll need to emit a new record for each one. Additionally, you’ll need to
add the zip code as the key to the transaction. Finally, you’ll add a sink node responsi-
ble for writing the pattern data to a Kafka topic. 

 In the patterns processor example, you can see the retailPurchaseKStream pro-
cessor using a flatMap operator. The KStream.flatMap method takes a ValueMapper
or a KeyValueMapper that accepts a single record and returns an Iterable (any Java
Collection) of new records, possibly of a different type. The flapMap processor “flat-
tens” the Iterable into one or more records forwarded to the topology. Figure 6.7
illustrates how this works. 

 The process of a flatMap is a well-known operation from functional programming
where one input creates a collection of items (the map portion of the function). But
instead of returning the collection, it flattens the collection into a sequence of
records. In our case here with Kafka Streams, a retail purchase of five items results in
five individual KeyValue objects with the keys corresponding to the zip code and the
values of a PurchasedItem object. 

The condition 
for updating the
purchase object

Sets the key to a
new value
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The following listing contains the code for KeyValueMapper.

KeyValueMapper<String, RetailPurchase,
 Iterable<KeyValue<String, PurchasedItem>>> retailTransactionToPurchases =
    (key, value) -> {
      String zipcode = value.getZipCode(); 
      return value.getPurchasedItemsList().stream() 
                .map(purchasedItem ->
                    KeyValue.pair(zipcode, purchasedItem))
                .collect(Collectors.toList());
}

The KeyValueMapper takes an individual transaction object and returns a list of
KeyValue objects. The key is the zip code where the transaction occurred, and the
value is an item included in the purchase. Now let’s put our new KeyValueMapper
into this section of the topology we’re creating. 

KStream<String, Pattern> patternKStream = retailPurchaseKStream
                .flatMap(retailTransactionToPurchases) 
                .mapValues(patternObjectMapper);  

patternKStream.print(Printed.<String,Pattern>toSysOut()
              .withLabel("patterns-stream")); 
patternKStream.to("patterns",
        Produced.with(stringSerde,purchasePatternSerde)); 

In this code example, you declare a variable to hold the reference of the new KStream
instance, and you’ll see why in an upcoming section. The purchase-patterns processor
forwards the records it receives to a child node of its own, defined by the method call
KStream.to, writing to the patterns topic. Note using a Produced object to provide
the previously built Serde. I’ve also snuck in a KStream#print processor that prints

Listing 6.10 KeyValueMapper returning a collection of PurchasedItem objects

Listing 6.11 Patterns processor and sink node that writes to Kafka

{K, List<V>} {K, V0}, {K, V}, {K, V }...1 2

FlatMap

Figure 6.7 FlatMap emits zero or more records from a single input record by 
flattening a collection returned from a KeyValueMapper or ValueMapper.

Extracts the zip code on the 
purchase for the new key

Uses the Java stream 
API to create a list of 
KeyValue pairs

Uses flatMap to create a new object 
for each time in a transaction

Maps each purchase 
to a pattern object

Prints records to the console Produces each record from the purchase
to a Kafka topic called "patterns"
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the key-value pairs of the stream to the console; we’ll talk more about viewing stream
records in section 6.5. 

 The KStream.to method mirrors the KStream.source method. Instead of setting a
source for the topology to read from, it defines a sink node used to write the data
from a KStream instance to a Kafka topic. The KStream.to method also provides over-
loads that allow for dynamic topic selection, and we’ll discuss that soon. 

6.4.3 Building the rewards processor

The third processor in the topology is the customer rewards accumulator node, which
will let ZMart track purchases made by members of their preferred customer club.
The rewards accumulator sends data to a topic consumed by applications at ZMart
HQ to determine rewards when customers complete purchases. 

KStream<String, RewardAccumulator> rewardsKStream =
       retailPurchaseKStream.mapValues(rewardObjectMapper);
rewardsKStream.to("rewards",
        Produced.with(stringSerde,rewardAccumulatorSerde));

You build the rewards accumulator processor using what should be, by now, a familiar
pattern: creating a new KStream instance that maps the raw purchase data contained
in the retail purchase object to a new object type. You also attach a sink node to the
rewards accumulator so the rewards KStream results can be written to a topic and used
to determine customer reward levels. 

 Now that you’ve built the application piece by piece, let’s look at the entire application.

public class ZMartKafkaStreamsApp {

@Override
public Topology topology(Properties streamProperties) {

StreamsBuilder streamsBuilder = new StreamsBuilder();

KStream<String, RetailPurchase> retailPurchaseKStream =
        streamsBuilder.stream("transactions",
            Consumed.with(stringSerde, retailPurchaseSerde))
        .mapValues(creditCardMapper);  

KStream<String, Pattern> patternKStream =
   retailPurchaseKStream
        .flatMap(retailTransactionToPurchases)
        .mapValues(patternObjectMapper);  

patternKStream.to("patterns",
      Produced.with(stringSerde,purchasePatternSerde));

Listing 6.12 Third processor and a terminal node that writes to Kafka

Listing 6.13 ZMart customer purchase KStream program

Builds the source 
and first processor

Builds the PurchasePattern 
processor
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KStream<String, RewardAccumulator> rewardsKStream =
      retailPurchaseKStream.mapValues(rewardObjectMapper);

rewardsKStream.to("rewards",
      Produced.with(stringSerde,rewardAccumulatorSerde));
retailPurchaseKStream.to("purchases",
      Produced.with(stringSerde,retailPurchaseSerde));

return streamsBuilder.build(streamProperties);

}

NOTE I’ve left out some details in the listing for clarity. The code examples
illustrate a point and are a subset of the complete source code accompanying
this book (src/main/java/bbejeck/chapter_6/ZMartKafkaStreamsApp.java).

This example is slightly more involved than the Yelling app but has a similar flow.
Specifically, you still performed the following steps:

1 Create a StreamsBuilder instance.
2 Build one or more Serde instances.
3 Construct the processing topology.
4 Assemble all the components and start the Kafka Streams program.

You’ll also notice you don’t see the logic responsible for creating the various map-
pings from the original transaction object to new types. That is by design. First, the
code for a KeyValueMapper or ValueMapper will be distinct for each use case, so the
particular implementations don’t matter too much.

 I’ve mentioned using Serdes, but I haven’t explained why or how you create them.
Let’s take some time now to discuss the role of the Serde in a Kafka Streams application. 

6.4.4 Using Serdes to encapsulate serializers and deserializers 
in Kafka Streams

As you learned in previous chapters, Kafka brokers work with records in a byte array for-
mat. The client is responsible for serializing when producing records and deserializing
when consuming. It’s no different with Kafka Streams since it uses embedded consumers
and producers. But instead of providing a specific deserializer or serializer, you configure
Kafka Streams with a Serde, which contains both the serializer and deserializer. 

 Some Serdes are provided out of the box by the Kafka client dependency (String,
Long, Integer, and so on), but you’ll need to create custom Serdes for other objects.

 In the first example, the Yelling app, you only needed a serializer/deserializer for a
String; an implementation is provided by the Serdes.String() factory method. In
the ZMart example, however, you need to create custom Serde instances because of
the arbitrary object types. We’ll look at what’s involved in building a Serde for the
RetailPurchase class. We won’t cover the other Serde instances because they follow
the same pattern, just with different types. 

Builds the
RewardAccumulator

processor
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NOTE I include this discussion on Serdes creation for completeness, but the
source code contains a class, SerdeUtil, that provides a protobufSerde method.
You’ll see this in the examples, which encapsulate the steps described in this
section. 

Building a Serde requires implementations of the Deserializer<T> and Serializer<T>
interfaces. We covered creating your own serializer and deserializer instances in sec-
tion 3.7, so I won’t repeat those details here. For reference, you can see the complete
code for the ProtoSerializer and ProtoDeserializer in the bbejeck.serializers
package in the source for the book. 

 Now, to create a Serde<T> object, you’ll use the Serdes.serdeFrom factory
method, taking steps like the following:

Deserializer<RetailPurchase> purchaseDeserializer =
      new ProtoDeserializer<>(); 
Serializer<RetailPurchase> purchaseSerializer =
      new ProtoDeserializer<>(); 
Map<String, Class<RetailPurchase>> configs
            = new HashMap<>();
   configs.put(false, RetailPurchase.class);
          deserializer.configure(configs,isKey);  
Serde<RetailPurchase> purchaseSerde =
     Serdes.serdeFrom(purchaseSerializer,purchaseDeserializer); 

As you can see, a Serde object is helpful because it serves as a container for the serial-
izer and deserializer for a given object. You create a custom Serde for the Protobuf
objects because the example does not use Schema Registry. But using Schema Registry
with Kafka Streams is a perfectly valid use case. Let’s take a quick pause to review how
you configure your Kafka Streams application when using it with Schema Registry. 

6.4.5 Kafka Streams and Schema Registry

In chapter 4, I discussed why you’d want to use Schema Registry with a Kafka-based
application. I’ll briefly describe those reasons here. The domain objects in your appli-
cation represent an implicit contract between the different users of your application.
For example, imagine one team of developers changing a field type from a java.util
.Date to a long and producing those changes to Kafka; the downstream consumer
applications will break due to the unexpected field type change. 

 So, by using a schema and Schema Resitry to store it, you make it much easier to
enforce this contract by enabling better coordination and compatibility checks. Addi-
tionally, the Schema Registry project provides Schema Registry–aware (de)serializers
and Serdes, alleviating the developer from writing the serialization code.

NOTE Schema Registry provides both a JSONSerde and a JSONSchemaSerde,
but they are not interchangeable! The JSONSerde is for Java objects that use

Creates the Deserializer for 
the RetailPurchase class

Creates the Serializer for 
the RetailPurchase class

Configurations for 
the deserializer

Creates the Protobuf Serde 
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JSON to describe the object. The JSONSchemaSerde is for objects that use
JSONSchema as the formal definition of the object. 

So how would the ZMartKafkaStreamsApp change to work with Schema Registry? All
that is required is to use Schema Registry–aware Serde instances. The steps for creat-
ing a Schema Registry aware Serde are simple:

1 Create an instance of one of the provided Serde instances.
2 Configure it with the URL for a Schema Registry server.

The following code provides the concrete steps you’ll take:

KafkaProtobufSerdePurchase> protobufSerde =
 new KafkaProtobufSerde<>(Purchase.class); 
String url = "https://...";                                 
Map<String, Object> configMap = new HashMap<>();
configMap.put(
  AbstractKafkaSchemaSerDeConfig.SCHEMA_REGISTRY_URL_CONFIG,
  url);                                             
protobufSerde.conserde(configMap, false);   

So, with just a few lines of code, you’ve created a Schema Registry–aware Serde that
you can use in your Kafka Streams application.

NOTE Since Kafka Streams contains consumer and producer clients, the
same rules for schema evolution and compatibility apply.

We’ve covered a lot of ground so far in developing a Kafka Streams application. We
still have much more to cover, but let’s pause and talk about the development process
and how you can make life easier while developing a Kafka Streams application. 

6.5 Interactive development
You’ve built the graph to process purchase records from ZMart in a streaming fashion,
and you have three processors that write out individual topics. During development, it
is possible to have a console consumer running to view results. But instead of using an
external tool, having your Kafka Streams application print or log from anywhere you
want inside the topology would be more convenient. This visual feedback directly
from the application is very efficient during development. You enable this output
using the KStream.peek() or KStream.print() method. 

 KStream.peek() allows you to perform a stateless action (via the ForeachAction
interface) on each record flowing through the KStream instance. It’s important to note
that it’s expected this will not change the incoming key and value. Instead, the peek oper-
ator is an opportunity to print, log, or collect information at arbitrary points in the topol-
ogy. Let’s take another look at the Yelling app, but now add a way to view the records

Instantiates the KafkaProtobufSerde, 
providing the class type as a 
constructor parameter

The URL for the location of a 
Schema Registry instance

Puts the URL 
in a HashMap

Calls the KafkaProtobufSerde#configure method
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before and after the application starts “yelling” (some details are omitted for clarity). The
source code is found at bbejeck/chapter_6/KafkaStreamsYellingAppWithPeek.

ForeachAction<String, String> sysout =
  (key, value) ->
   System.out.println("key " + key
   + " value " + value);

builder.stream("src-topic",
  Consumed.with(stringSerde, stringSerde))
  .peek(sysout)      
  .mapValues(value -> value.toUpperCase())
  .peek(sysout)      
  .to( "out-topic",
  Produced.with(stringSerde, stringSerde));

We’ve strategically placed these peek operations that will print records to the console,
both before and after the mapValues call. 

 The KStream.print() method is purpose-built for printing records. Some previ-
ous code snippets contained examples of using it, but we’ll show it again here (some
details are omitted for clarity). 

...
 KStream<...> upperCasedStream = simpleFirstStream.mapValues(...);
 upperCasedStream.print(Printed.toSysOut()); 
 upperCasedStream.to(...);

In this case, you’re printing the uppercased words immediately after transformation.
What is the difference between the two approaches? You should notice with the
KStream.print() operation, you didn’t chain the method calls together like you did
using KStream.peek() because print is a terminal method. 

 Terminal methods in Kafka Streams have a return signature of void; hence, you
can’t chain another method call afterward, as it terminates the stream. The terminal
methods in KStream interface are print, foreach, and to. Aside from the print
method we discussed, you’ll use to when you write results back to Kafka. The foreach
method is suitable for operating on each record when you don’t need to write the
results back to Kafka, such as calling a microservice. There is a deprecated process
method that is terminal as well, but since it’s deprecated we won’t discuss it. The new
process method (introduced in Apache Kafka 3.3) allows for the integration of the
DSL with the Processor API, which we’ll discuss in chapter 10. 

Listing 6.14 Printing records flowing through the Yelling app

Listing 6.15 Printing records using KStream.print
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 While either printing method is a valid approach, I prefer the peek method
because it makes it easy to slip a print statement into an existing stream. But this is a
personal preference, so ultimately, it’s up to you to decide which approach to use.

 So far, we’ve covered some basic things we can do with a Kafka Streams applica-
tion, but we’ve only scratched the surface. Let’s continue exploring what we can do
with an event stream. 

6.6 Choosing which events to process
So far, you’ve seen how to apply operations to events flowing through the Kafka
Streams application. But you are processing every event in the stream in the same
manner. What if there are events you want to avoid handling? Or what about events
with a given attribute that require you to handle them differently?

 Fortunately, the API makes methods available that provide the flexibility necessary
to meet those needs. The KStream#filter method drops records from the stream
that do not match a given predicate. The KStream#split allows you to split the origi-
nal stream into branches for different processing based on provided predicate(s) to
reroute records. To make these new methods more concrete, let’s update the require-
ments to the original ZMart application:

 The ZMart updated its rewards program and now only provides points for pur-
chases over $10. With this change, dropping nonqualifying purchases from the
rewards stream would be ideal.

 ZMart has expanded and has bought an electronics chain and a popular coffee
house chain. All purchases from these new stores will flow into the streaming
application you’ve set up. However, you’ll need to separate those purchases
for different treatments while still processing everything else in the applica-
tion the same.

NOTE From this point forward, all code examples are pared down to the
essentials to maximize clarity. Unless we introduce something new, you can
assume that the configuration and setup code remain the same. These trun-
cated examples aren’t meant to stand alone: you’ll find the complete code
listing for this example at src/main/java/bbejeck/chapter_6/ZMartKafka-
StreamsFilteringBranchingApp.java.

6.6.1 Filtering purchases

The first update is to remove nonqualifying purchases from the rewards stream. To
accomplish this, insert a KStream.filter() before the KStream.mapValues method.
The filter takes a Predicate interface as a parameter (here we’ll a lambda), and it
has one method defined, test(), which takes two parameters—the key and the value—
although, at this point, you only need to use the value. 

NOTE There is also KStream.filterNot, which performs filtering but in
reverse. Only records that don’t match the given predicate are processed fur-
ther in the topology. 
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The processor topology graph changes by making these changes, as shown in listing 6.16.

KStream<String, RewardAccumulator> rewardsKStream = 
  retailPurchaseKStream.filter((key, value) ->   
                              value.getPurchasedItemsList().stream()
                             .mapToDouble((item -> item.getQuantity()
                                                  * item.getPrice()))
                             .sum() > 10.00)
        .mapValues(rewardObjectMapper);  

You have now successfully updated the rewards stream to drop purchases that don’t
qualify for reward points. 

6.6.2 Splitting/branching the stream

New events are flowing into the purchase stream, and you need to process them differ-
ently. You’ll still want to mask any credit card information, but after that, the pur-
chases from the acquired coffee and electronics chain need to get pulled out and sent
to different topics. Additionally, you need to continue using the same process for the
original events. 

 You need to split the original stream into three substreams or branches: two for
handling the new events and one for processing the initial events in the topology
you’ve already built. This splitting of streams sounds tricky, but Kafka Streams pro-
vides an elegant way to do this, as we’ll see now. Figure 6.8 demonstrates the concep-
tual idea of what splitting a stream involves.

The general steps you’ll take to split a stream into branches are the following:

1 Use the KStream.split() method, which returns a BranchedKStream object. 

Listing 6.16 Adding a filter to drop purchases not meeting rewards criteria

The original 
rewards stream

The KStream.filter method, which takes a 
Predicate<K,V>, represented as a lambda

Maps the purchase into a 
RewardAccumulator object

Split

Original stream

Records matching the first
predicate

Records not matching the first
predicate, but matching the

second one

Records not matching either predicate
will flow on the default stream

Figure 6.8 Creating branches for the two specific purchase types
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2 Call BranchedKStream.branch() with Predicate and Branched objects as parame-
ters. The Predicate contains a condition that returns true or false when tested
against a record. The Branched object contains the logic for processing a record.
Each execution of this method creates a new branch in the stream. 

3 You complete the branching with a call to either BranchedKStream.default-
Branch() or BranchedKStream.noDefaultBranch(). If you define a default
branch, Kafka Streams will use it for records that do not match predicates.
With the noDefaultBranch option, nonmatching records get dropped. When
calling either of the branching termination methods, a Map<String, KStream<K,
V> is returned. The Map may contain KStream objects for a new branch, depend-
ing on how you’ve built the Branched objects. We’ll cover more options for
branching soon. 

The Predicate is a logical gate for its companion Branched object. If the condition
returns true the “gate” opens, and the record flows into the processor logic for
that branch. 

NOTE When splitting a KStream, you can’t change the types of the keys or val-
ues, as each branch has the same types as the parent or original branch.

In our case, you’ll want to filter out the two purchase types into their branch and then
create a default branch consisting of everything else. This default branch is the origi-
nal purchase stream, which will handle all records that don’t match either predicate.
Now that we’ve reviewed the concept, let’s take a look at the code you’ll implement
(some details are omitted for clarity). The source code is found at bbejeck/chap-
ter_6/ZMartKafkaStreamsFilteringBranchingApp.

Predicate<String, Purchase> isCoffee =
  (key, purchase) ->
   purchase.getDepartment().equalsIgnoreCase("coffee");      

Predicate<String, Purchase> isElectronics =
  (key, purchase) ->
  purchase.getDepartment().equalsIgnoreCase("electronics");  

purchaseKStream.split()  
.branch(isCoffee,
 Branched.withConsumer(coffeeStream -> coffeeStream.to("coffee-topic"))) 
.branch(isElectronics,
  Branched.withConsumer(electronicStream ->
  electronicStream.to("electronics"))  
.defaultBranch(Branched.withConsumer(retailStream ->
                retailStream.to("purchases")); 

In this example, you’ve split the purchase stream into two new streams, one each for
coffee and electronic purchases. Branching provides an elegant way to process records

Listing 6.17 Splitting the stream
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differently within the same stream. While in this initial example, each is a single pro-
cessor writing records to a topic, these branched streams can be as complex as you
need to make them.

NOTE This example sends records to several different topics. Although you
can configure Kafka to create topics automatically, relying on this mechanism
is not a good idea. If you use auto-creation, the topics will use the default val-
ues from the server.config properties file, which may or may not be the set-
tings you need. You should plan for the topics you’ll need, the number of
partitions, and the replication factor and create them before running your
Kafka Streams application.

In this branching example, you’ve split out discrete KStream objects, which are stand-
alone and don’t interact with anything else in the application, and that is an accept-
able approach. But now let’s consider a situation where you have an event stream you
want to tease out into separate components, but you need to combine the new streams
with existing ones in the application.

 Consider you have Internet of Things (IoT) sensors, and early on, you combined
two related sensor readings into one topic, but as time passed, newer sensors started
to send results to distinct topics. The older sensors are fine as is, and it would be cost-
prohibitive to go back and make the necessary changes to fit the new infrastructure.
So, you’ll need an application to split the legacy stream into two streams and combine
or merge them with the newer streams of a single reading type. Another factor is that
older proximity readings use feet, but the new ones are in meters. So, in addition to
extracting the proximity reading into a separate stream, you need to convert the read-
ing values into meters.

 Now let’s walk through an example of how you’ll do splitting and merging, starting
with the splitting (some details are omitted for clarity).

KStream<String, Sensor> legacySensorStream =
    builder.stream("combined-sensors", sensorConsumed);

 Map<String, KStream<String, Sensor>> sensorMap =
        legacySensorStream.split(Named.as("sensor-")) 
        .branch(isTemperatureSensor, Branched.as("temperature")) 
        .branch(isProximitySensor,
            Branched.withFunction(
                ps -> ps.mapValues(feetToMetersMapper), "proximity")) 
        .noDefaultBranch(); 

Listing 6.18 Splitting the stream in a way you have access to new streams
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Overall, each branch call results in a Map entry. The key is the concatenation of the
name passed into the KStream.split() method and string provided in the Branched
object. The value is a KStream instance resulting from each branch call. 

 In the first branching example, the split and subsequent branching calls also
return a Map, but it would have been empty. The reason is that when you pass in a
Branched.withConsumer (a java.util.Consumer interface), it’s a void method, so the
Branched operator places no entry in the map. But the Branched.withFunction (a
java.util.Function interface) accepts a KStream<K, V> object as a parameter and
returns a KStream<K, V> instance, so it goes into the map as an entry. The function
takes the branched KStream object. It executes a MapValues to convert the proximity
sensor reading values from feet to meters since the sensor records in the updated
stream are in meters. 

 I want to point out some subtlety with this example. The branch call does not pro-
vide a function but still ends up in the resulting Map. How is that so? When you only pro-
vide a Branched parameter with a name, it’s treated the same as if you had used a
java.util.Function that returns the provided KStream object, also known as an identity
function. So what’s the determining factor to use either Branched.withConsumer or
Branched.withFunction? I can answer that question best by going over the next block
of code in our example. 

KStream<String, Sensor> temperatureSensorStream =  
      builder.stream("temperature-sensors", sensorConsumed);

KStream<String, Sensor> proximitySensorStream =  
      builder.stream("proximity-sensors", sensorConsumed);

temperatureSensorStream.merge(sensorMap.get("sensor-temperature"))
      .to("temp-reading", Produced.with(stringSerde, sensorSerde)); 

proximitySensorStream.merge(sensorMap.get("sensor-proximity"))
     .to("proximity-reading", Produced.with(stringSerde, sensorSerde)); 

The requirements for splitting the stream were to extract the different IoT sensor
results by type, place them in the same stream as the new updated IoT results, and
convert any proximity readings into meters. You accomplish this task by extracting the
KStream from the map with the corresponding keys created in the branching code in
the previous code block.

 To combine the branched legacy stream with the new one, you use a DSL operator
KStream.merge, the functional analog of KStream.split. It merges different KStream
objects into one. With KStream.merge, there are no ordering guarantees between

Listing 6.19 Splitting the stream and gaining access to the newly created streams
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records of the different streams, but the relative order of each stream remains. In
other words, the processing order between the legacy stream and the updated one is
not guaranteed, but the order within each stream is preserved. 

 It should now be clear why you use Branched.withConsumer or Branched.with-
Function. In the latter case, you need to get a handle on the branched KStream to
integrate into the outer application, while with the former, you don’t need access to
the branched stream.

 That wraps up our discussion on branching and merging, so let’s cover naming
topology nodes in the DSL. 

6.6.3 Naming topology nodes

When you build a topology in the DSL, Kafka Streams creates a graph of processor
nodes, giving each one a unique name. Kafka Streams generates the node names by
taking the processor function name and appending a globally incremented number.
To view this topology description, you must get the TopologyDescription object and
print it to the console or a log entry. 

TopologyDescription topologyDescription =
  streamsBuilder.build().describe();
System.out.println(topologyDescription.toString());

Running this code yields the following output on the console.

Topologies:
   Sub-topology: 0
    Source: KSTREAM-SOURCE-0000000000 (topics: [src-topic]) 
      --> KSTREAM-MAPVALUES-0000000001  
    Processor: KSTREAM-MAPVALUES-0000000001 (stores: []) 
      --> KSTREAM-SINK-0000000002
      <-- KSTREAM-SOURCE-0000000000  
    Sink: KSTREAM-SINK-0000000002 (topic: out-topic) 
      <-- KSTREAM-MAPVALUES-0000000001

From looking at the names, you can see the first node ends in 0, the second node
KSTREAM-MAPVALUES ending in 1, etc. The Sub-topology listing indicates a portion of
the topology containing a distinct source node; every processor downstream of the
source node is a member of the given Sub-topology. If you were to define a second
stream with a new source, it would show up as Sub-topology: 1. We’ll see more about
sub-topologies later in the book when we cover repartitioning. 

 The arrows pointing to the right (-→) show the records flow in the topology. The
arrows pointing left (←-) indicate the lineage of the record flow, where the current

Listing 6.20 Getting a description of the topology and printing it out
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processor received their input. Note that a processor could forward records to more
than one node, and a single node could get input from multiple nodes.

 The topology description gives you a good sense of the structure of the Kafka
Streams application. However, once you build more complex applications, the generic
names with the numbers become hard to follow. For this reason, Kafka Streams pro-
vides a way to name the processing nodes in the DSL.

 All of the methods in the Streams DSL have an overload that takes a Named
object where you can specify the name used for the node in the topology. Providing
the name is crucial as you can make it relate to the processing node role in your
application, not just what the processor does. Configuration objects like Consumed
and Produced have a withName method for giving a name to the operator. Let’s
revisit the KafkaStreamsYellingApplication, but this time, we’ll add a name for
each processor. 

builder.stream("src-topic",
                Consumed.with(stringSerde, stringSerde)
                        .withName("Application Input"))   
        .mapValues((key, value) -> value.toUpperCase(),
                   Named.as("Convert to Yelling")) 
        .to("out-topic",
             Produced.with(stringSerde, stringSerde)
                     .withName("Application Output")) 

The description from the updated topology with names will now look like the follow-
ing code listing.

Topologies:
   Sub-topology: 0
    Source: Application-Input (topics: [src-topic])
      --> Convert-to-Yelling
    Processor: Convert-to-Yelling (stores: [])
      --> Application-Output
      <-- Application-Input
    Sink: Application-Output (topic: out-topic)
      <-- Convert-to-Yelling

Now, you can view the topology description and get a sense of the role of each proces-
sor in the overall application instead of just what the processor itself does. Naming the
processor nodes becomes critical for your application when state is involved, but we’ll
get to that later.

 Next, we’ll look at how you can use dynamic routing for your Kafka Streams
application. 

Listing 6.22 Updated KafkaStreamsYellingApplication with names

Listing 6.23 Full topology description with provided names
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6.6.4 Dynamic routing of messages

Say you need to differentiate which store department the purchase comes from—for
example, housewares or shoes. You can use dynamic routing to accomplish this task
on a per-record basis. The KStream.to() method has an overload that takes a Topic-
NameExtractor, which will dynamically determine the correct Kafka topic name to
use. Note that the topics must exist ahead of time; by default, Kafka Streams will not
automatically create extracted topic names. 

 So, let’s go back to the branching example. Each object has a department field, so
instead of creating a branch, we will process these events with everything else and use
the TopicNameExtractor to determine the topic to which we route the events. 

 The TopicNameExtractor has one method, extract, which you implement to pro-
vide the logic for determining the topic name. What you’re going to do here is check
whether the department of the purchase matches one of the unique conditions for
routing the purchase events to a different topic. If it does match, it returns the depart-
ment’s name for the topic name (you created it beforehand). Otherwise, it returns
the name of the topic for all other purchase events. 

@Override
public String extract(String key,
                      Purchase value,
                      RecordContext recordContext) {
    String department = value.getDepartment();
    if (department.equals("coffee")
            || department.equals("electronics")) { 
        return department;
    } else {
        return "purchases";             
    }
}

NOTE The TopicNameExtractor interface only has one method to implement;
I’ve chosen to use a concrete class because you can then write a test for it.

Although the code example here uses the value to determine the topic to use, it could
very well use the key or a combination of the key and the value. But the third parame-
ter to the TopicNameExtractor#extract method is a RecordContext object. The
RecordContext is associated with a record in Kafka Streams. 

 The context contains metadata about the record—the original timestamp, offset,
topic, partition, and the Headers. We discussed headers in chapter 4; we won’t repeat
the coverage here. One of the primary use cases for headers is routing information,
and Kafka Streams exposes them via the ProcessorContext. 

 Let’s look at one possible example for retrieving the topic name via a Header. In
this example, you’ll extract the Headers from the RecordContext. First, you need to

Listing 6.24 Implementing the extract method to determine the topic name
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check that the Headers are not null, and then you drill down to get the specific
routing information. 

TIP Kafka Streams only exposes the RecordContext to the TopicNameEx-
tractor interface. If you need access to the headers of a record in Kafka
Streams, you’ll want to use the Processor API or the process method of the
DSL and then use the Record.headers() method to access the headers. 

From there, you return the topic’s name to use based on the value stored in the
Header. Since Headers are optional and may not exist or contain the specific “routing”
header, you’ve defined a default value in the TopicNameExtractor. 

public String extract(String key,
                      Purchase value,
                      RecordContext recordContext) {

        Headers headers = recordContext.headers(); 
       if (headers != null) {
        Iterator<Header> routingHeaderIterator =
          headers.headers("routing").iterator();

        if (routingHeaderIterator.hasNext()) {
             Header routing = routingHeaderIterator.next(); 

             return new String(routing.value(),
                               StandardCharsets.UTF_8); 
        }
      }
       return defaultTopicName; 
    }

Now, you’ve learned about using the Kafka Streams DSL API. 

Summary
 Kafka Streams is a graph of processing nodes called a topology. Each node in

the topology is responsible for performing some operation on the key-value
records flowing through it. A Kafka Streams application is minimally composed
of a source node that consumes records from a topic and a sink node that pro-
duces results back to a Kafka topic. You minimally configure a Kafka Streams
application with the application.id and bootstrap servers configuration. Mul-
tiple Kafka Streams applications with the same application.id are logically
considered one application.

 You can use the KStream.mapValues function to map incoming record values to
new values, possibly of a different type. These mapping changes shouldn’t modify

Listing 6.25 Using information in a Header to determine the topic name
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the original objects. Another method, KStream.map, performs the same action
but can be used to map both the key and the value to something new.

 To selectively process records, you can use the KStream.filter operation, where
records that don’t match a predicate get dropped. A predicate is a statement that
accepts an object as a parameter and returns true or false depending on
whether that object matches a given condition. The KStream.filterNot method
does the opposite: it only forwards key-value pairs that don’t match the predicate.

 The KStream.branch method uses predicates to split records into new streams
when a record matches a given predicate. The processor assigns a record to a
stream on the first match and drops unmatched records. Branching is an ele-
gant way of splitting a stream into multiple streams where each stream can
operate independently. For the opposite action, KStream.merge merges two
KStream objects into one stream.

 You can modify an existing key or create a new one using the KStream
.selectKey method.

 For viewing records in the topology, you can use KStream.print or KStream
.peek (by providing a ForeachAction that does the actual printing). KStream
.print is a terminal operation, meaning you can’t chain methods after calling
it. KStream.peek returns a KStream instance, making it easier to embed before
and after KStream methods.

 You can view a Kafka Streams application’s generated graph using the Topology
.describe method. All graph nodes in Kafka Streams have autogenerated names
by default, making the graph hard to understand when the application grows in
complexity. You can avoid this situation by providing names to each KStream
method so that when you print the graph, you have names describing the role
of each node.

 You can route records to different topics by passing a TopicNameExtractor
parameter to the KStream.to method. The TopicNameExtractor can inspect
the key, value, or headers to determine the correct topic name for producing
records back to Kafka. You need to create the topics ahead of time.



Streams and state
In the last chapter, we dove headfirst into the Kafka Streams DSL and built a process-
ing topology to handle streaming requirements from purchase activity. Although you
created a nontrivial processing topology, it was one-dimensional in that all transfor-
mations and operations were stateless. You considered each transaction in isolation,
without regard to other events coinciding or within certain time boundaries, either
before or after the transaction. Also, you only dealt with individual streams, ignoring
any possibility of gaining additional insight by joining streams together. 

 In this chapter, you’ll extract the maximum amount of information from the
Kafka Streams application. To get this level of information, you’ll need to use state.
State is nothing more than the ability to recall information you’ve seen before and
connect it to current information. You can utilize state in different ways. We’ll look
at one example when we explore the stateful operations provided by the Kafka
Streams DSL, such as the accumulation of values.

This chapter covers
 Adding stateful operations to Kafka Streams

 Using state stores in Kafka Streams

 Enriching event streams with joins

 Learning how timestamps drive Kafka Streams
188
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 We’ll get to another example of using state when we discuss the joining of streams.
Joining streams are closely related to the joins performed in database operations, such
as joining records from the employee and department tables to generate a report on
who staffs which departments in a company.

 We’ll also define what the state needs to look like and the requirements for using
state when we discuss state stores in Kafka Streams. Finally, we’ll weigh the importance
of timestamps and look at how they can help you work with stateful operations, such
as ensuring you only work with events occurring within a given time frame or allowing
you to work with data arriving out of order.

7.1 Stateful vs. stateless
Before giving examples, let’s discuss the difference between stateless and stateful. In a
stateless operation, the current event contains enough information to complete the
desired action. Stateful operations are more complex because they involve retrieving
data from previous events. A basic example of a stateful operation is an aggregation.
For example, consider the following code listing. 

public boolean numberIsOnePredicate (Widget widget) {

    return widget.number == 1;
}

Here, the Widget object contains all the information needed to execute the predicate;
there’s no need to look up or store data. Now, let’s take a look at an example of a state-
ful function. 

public int count(Widget widget) {

  int widgetCount = hashMap.compute(widget.id,
   (key, value) -> (value == null) ? 1 : value + 1)

  return widgetCount;
}

Here, in the count function, we are computing the total of widgets with the same ID.
To perform the count, we first must look up the current number by ID, increment it,
and then store the new number. If the number doesn’t exist, we provide an initial
value of 1. 

 While this is a trivial example of using state, the principals involved are what mat-
ters here. We use a common identifier across different objects, called a key, to store
and retrieve some value type to track a given state we want to observe. Additionally, we
use an initializing function to create an initial value for the first calculation. We will

Listing 7.1 Stateless function example

Listing 7.2 Stateful function example
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explore and use these core steps in this chapter, although it will be far more robust
than using the humble HashMap!

7.2 Adding stateful operations to Kafka Streams
So the next question is, why do you need to use state when processing an event
stream? The answer is any time you need to track information or progress across
related events. For example, consider a Kafka Streams application monitoring players’
progress in an online poker game. Participants play in rounds, and their score from
each round is transmitted to a server and then reset to zero for the start of the next
round. The game server produces the player’s score to a topic. 

 A stateless event stream will allow you to work with the current score from the lat-
est round. But for tracking the player’s total, you’ll need to keep the state of all their
previous scores.

 This scenario leads us to our first example of a stateful operation in Kafka Streams.
For this example, we’re going to use a reduce operation. A reduce or, more generi-
cally, a fold operation takes multiple values and reduces or merges them into a single
result. Let’s look at figure 7.1 to help understand how this process works. 

As you can see in the illustration, the reduce operation takes three numbers and
“reduces” them to a single result by summing the numbers together. So Kafka Streams
takes an unbounded stream of scores and continues to add them per player. At this
point, we’ve described the reduce operation itself, but there’s some additional infor-
mation we need to cover regarding setup.

 When describing our online poker game scenario, I mentioned that there are indi-
vidual players, so it stands to reason that we want to calculate the total scores for each
individual. But we aren’t guaranteed the order of the incoming player scores, so we
need the ability to group them. Remember, Kafka works with key-value pairs, so we’ll
assume the incoming records take the form of playerId-score for the key-value pair.

 So, if the key is the player-id, all Kafka Streams needs to do is bucket or group
the scores by the ID, and you’ll end up with the summed scores per player. It will prob-
ably be helpful for us to view an illustration of the concept in figure 7.2.

 By grouping the scores by player-id, you are guaranteed only to sum the scores
for each player. This group-by functionality in Kafka Streams is similar to the SQL
group-by when performing aggregation operations on a database table.

[17, 17, 12]

A reduce operation takes a
list of numbers and sums them together.
So it's "reducing" the input to a
single value.

[46]

Figure 7.1 A reduce takes several 
inputs and merges them into a single 
result of the same type.
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NOTE From now on, I’m not showing the basic setup code needed (i.e., cre-
ating the StreamBuilder instance and Serdes for the record types). You’ve
learned in the previous chapter how these components fit into an applica-
tion, so you can refer back if you need to refresh your memory.

Now let’s see the reduce in action with Kafka Streams.

KStream<String, Double> pokerScoreStream = builder.stream("poker-game",
        Consumed.with(Serdes.String(), Serdes.Double()));

pokerScoreStream
        .groupByKey()       
        .reduce(Double::sum,   
                Materialized.with(Serdes.String(), Serdes.Double()))
        .toStream()                 
        .to("total-scores",
                Produced.with(Serdes.String(), Serdes.Double()));   

This Kafka Streams application results in key-value pairs like Neil, 650, and it’s a con-
tinual stream of summed scores, continually updated.

 Looking over the code, you can see you first perform a groupByKey call. It’s
important to note that grouping by key is a prerequisite for stateful aggregations in
Kafka Streams. So what do you do when it doesn’t exist or you need to choose a new
one? For the case of selecting a different key, the KStream interface provides a groupBy
method that accepts a KeyValueMapper parameter that you use to choose a new key.
We’ll see an example of selecting a new key in section 7.2.3. 

7.2.1 Group-by details

We should take a quick detour to briefly discuss the return type of the group-by call,
which is a KGroupedStream. KGroupedStream is an intermediate object that provides
methods aggregate, count, and reduce. In most cases, you won’t need to keep a

Listing 7.3 Performing a reduce in Kafka Streams

Anna-200, Neil-225, Matthias-175, Neil-195, Anna-350, Neil-195, Matthias-300

Incoming score stream

Groups records
by key and then
sums the scores
for each player

Anna -> 550
Neil -> 615
Matthias -> 475

Figure 7.2 Grouping the scores by player-id ensures we only sum the scores for the 
individual players.

Groups by key so that scores are 
calculated by individual keys

Reducer as
a method
reference

Converts the KTable to a stream Writes the results out to a topic
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reference to the KGroupedStream; you’ll execute the method you need, and its exis-
tence is transparent to you. 

 What are the cases when you’d want to keep a reference to the KGroupedStream?
Any time you want to perform multiple aggregation operations from the same key
grouping is a good example. We’ll see one when we cover windowing later on. Now,
let’s get back to our first stateful operation.

 Immediately after the groupByKey call, we execute reduce; as I’ve explained
before, the KGroupedStream object is transparent to us in this case. The reduce
method has overloads taking anywhere from one to three parameters; in this case,
we’re using the two-parameter version, which accepts a Reducer interface and a Mate-
rialized configuration object as parameters. For the Reducer, you’re using a method
reference to the static method Double.sum, which sums the previous total score with
the newest score from the game. 

 The Materialized object provides the Serdes the state store uses for (de)serializing
keys and values. Under the covers, Kafka Streams uses local storage to support stateful
operations. The stores store key-value pairs as byte arrays, so you need to provide the
Serdes to serialize records on input and deserialize them on retrieval. We’ll get into
the details of state stores in an upcoming section. 

 After reduce, you call toStream because the result of all aggregation operations in
Kafka Streams is a KTable object (which we haven’t covered yet, but we will in the next
chapter), and to forward the aggregation results to downstream operators, we need to
convert it to a KStream. 

 Then, we can send the aggregation results to an output topic via a sink node repre-
sented by the to operator. But stateful processors don’t have the same forwarding
behavior as stateless ones, so we’ll take a minute here to describe that difference. 

 Kafka Streams provides a caching mechanism for the results of stateful operations.
Only when Kafka Streams flushes the cache are stateful results forwarded to down-
stream nodes in the topology. There are two scenarios when Kafka Streams will flush
the cache. The first is when the cache is full, which, by default, is 10 MB; the second is
when Kafka Streams commits (every 30 seconds with default settings). Figure 7.3 will
help to cement your understanding of how the caching works in Kafka Streams.

 From the illustration, you see that the cache sits in front of forwarding records so
that you won’t observe several of the intermediate results. You will always see the latest
updates during a cache flush. Caching also has the effect of limiting writes to the state
store and its associated changelog topic. Changelog topics are internal topics created
by Kafka Streams for fault tolerance of the state stores. We’ll cover changelog topics in
section 7.4.1.

TIP If you want to observe every result of a stateful operation, you can turn
off the cache by setting StreamsConfig.CACHE_MAX_BYTES_BUFFERING_CON-
FIG to 0. However, using this configuration affects every state store in the
topology. For an individual store, you apply no caching via the Materialized
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config object via the Materialized.withCachingDisabled() function. Set-
ting the cache level to zero is best applied in a development environment. 

7.2.2 Aggregation vs. reducing

You’ve learned about one stateful operator, but we have another option for stateful
operations. If you notice, a reduce operation returns the same type. But sometimes,
you’ll want to build a different result type, and for that, you’ll want to use the aggregate
operation. The concept behind an aggregation is similar, but you can return a type
different from the record value. Let’s look at an example to answer why you would use
aggregate over reduce. 

 Imagine you work for ETrade. You need to create an application that tracks stock
transactions of individual customers, not large institutional traders. You want to keep
a running tally of the total volume of shares bought and sold, the dollar volume of
sales and purchases, and the highest and lowest price seen at any point.

 You’ll need to create a custom data object to provide this information. Needing a
custom data object is where the aggregate comes into play because it allows for a dif-
ferent return type from the incoming value. In this case, the incoming record type is a
singular stock transaction object. The aggregation result will be another type contain-
ing the required information described in the previous paragraph.

 Since we’ll need to put this custom object in a state store that requires serialization,
we’ll create a Protobuf schema to generate it and use utility methods for creating a
Protobuf Serde. Since this application has detailed aggregation requirements, we’ll
implement the Aggregator<K, V, VR> interface as a concrete class, allowing us to test it
independently. 

 Let’s take a look at part of the aggregator implementation. Since this class contains
some logic unrelated to learning Kafka Streams, I will only show partial information.

1

2

3

Changelog

State store on diskkey-values flow into
the aggregation
processor

The processor
forwards the aggregation results
to the caching layer.

in-memory cache

When Kafka Streams flushes the
cache, only the latest record per
key is written to the changelog
topic and the state store and
forwarded to the next processor.

Next processor

Figure 7.3 Caching intermediate results of an aggregation operation
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To view full details, consult the source code and look for the bbejeck.chapter_7
.aggregator.StockAggregator class. 

public class StockAggregator implements Aggregator<String,
                                             Transaction,
                                             Aggregate> {

    @Override
    public Aggregate apply(String key,
                          Transaction transaction,
                          Aggregate aggregate) {      

   Aggregate.Builder currAggregate =
                                aggregate.toBuilder();  

    double transactionDollars =
           transaction.getNumberShares()
         * transaction.getSharePrice();   

    if (transaction.getIsPurchase()) {            
        long currentPurchaseVolume =
             currAggregate.getPurchaseShareVolume();
        currAggregate.setPurchaseShareVolume(
                      currentPurchaseVolume
                     + transaction.getNumberShares());

        double currentPurchaseDollars =
                currAggregate.getPurchaseDollarAmount();

        currAggregate.setPurchaseDollarAmount(
                      currentPurchaseDollars
                      + transactionDollars);
    }

I will not go into much detail about the Aggregator instance here since the main
point of this section is how to build a Kafka Streams aggregation application; the par-
ticulars of how you implement the aggregation will vary from case to case. But this
code shows how we’re building up the transactional data for a given stock. Let’s look
at how we’ll plug this Aggregator implementation into a Kafka Streams application to
capture the information. The source code for this example can be found in bbe-
jeck.chapter_7.StreamsStockTransactionAggregations. 

NOTE There are some details I will leave out of the source code as presented
in the book, such as printing records to the console. From now on, our Kafka
Streams applications will get more complex, and learning the essential part of
the lesson will be easier if I only show the necessary details. Rest assured, the
source code is complete.

Listing 7.4 Aggregator implementation used for creating stock transaction summaries

Implementation of 
the apply method: the 
second parameter is the 
incoming record, and 
the third parameter is 
the current aggregate.

You need to use a 
builder to update 
the Protobuf object.

Gets the total 
dollars of the 
transaction

If the transaction is a 
purchase, updates the 
purchase-related details
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KStream<String, Transaction> transactionKStream =
    builder.stream("stock-transactions",
                   Consumed.with(stringSerde, txnSerde));     

transactionKStream.groupBy((key, value) -> value.getSymbol(),   
      Grouped.with(Serdes.String(), txnSerde))
  .aggregate(() -> initialAggregate,  
            new StockAggregator(),
            Materialized.with(stringSerde, aggregateSerde))
  .toStream()   
  .peek((key, value) -> LOG.info("Aggregation result {}", value))
  .to("stock-aggregations", Produced.with(stringSerde, aggregateSerde));  

This application starts in familiar territory, creating the KStream instance by subscrib-
ing to a topic and providing the Serdes for deserialization. You’ve seen a groupByKey
in the reduce example, but in this example, the incoming records use client ID for a
key, but we need to group records by the stock ticker or symbol. So, to change the
key, you use GroupBy, which takes a KeyValueMapper, a lambda function in our code
example. In this case, the lambda returns the ticker symbol in the record to enable
proper grouping. 

 Since the topology changes the key, Kafka Streams must repartition the data. In
the next section, I’ll discuss repartitioning in more detail, but it’s enough to know
now that Kafka Streams takes care of it for you.

transactionKStream.groupBy((key, value) -> value.getSymbol(),
      Grouped.with(Serdes.String(), txnSerde))
  .aggregate(() -> initialAggregate,     
            new StockAggregator(),
            Materialized.with(stringSerde, aggregateSerde))
  .toStream()   
  .peek((key, value) -> LOG.info("Aggregation result {}", value))
  .to("stock-aggregations", Produced.with(stringSerde, aggregateSerde));  

By the end of the code, we get to the crux of our example—applying the aggregation
operation. Aggregations differ slightly from the reduce operation because aggrega-
tions require an initial value for the first calculation. With reduce, the first input
serves as the initial value.

Listing 7.5 Kafka Streams aggregation

Listing 7.6 Kafka Streams aggregation

Creates the 
KStream instance

Groups by key 
and provides 
a function to 
select the keyalls the

regate
nction

Converts the resulting 
aggregation KTable to a KStream

Writes the aggregation
results out to a topic

Calls the 
aggregate 
function

Converts the resulting 
aggregation KTable to a KStream

Writes the aggregation
results out to a topic
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 Since there’s no way for Kafka Streams to know what the aggregation will create,
you need to give it an initial value to seed it. In our case, it’s an instantiated Aggregate
object with uninitialized fields. 

 The second parameter you provide is the Aggregator implementation, which con-
tains your logic to build up the aggregation for each record it encounters. The
optional third parameter is a Materialized object, which you’re using here to supply
the Serdes required by the state store. 

 The final parts of the application convert the KTable resulting from the aggrega-
tion to a KStream so that you can forward the aggregation results to a topic. Here,
you’re also using a peek operation before the sink processor to view results directly
from the application flow. Using a peek operator this way is typically for development
or debugging purposes only. 

NOTE Remember when running the examples that Kafka Streams uses cach-
ing, so you won’t immediately observe results until the cache gets flushed.

So, at this point, you’ve learned about the primary tools for stateful operations in the
Kafka Streams DSL: reduce and aggregation. There’s another stateful operation that
deserves mention here, and that is the count operation. The count operation is “syn-
tactic sugar” for incrementing a counter aggregation. You’d use the count when you
need a running tally of a total—say, the number of times a user has logged into your
site or the total number of readings from an IoT sensor. I won’t show an example
here, but you can see one in the source code at bbejeck/chapter_7/StreamsCounting
Application. 

 In this previous example where we built stock transaction aggregates, I mentioned
that changing the key for an aggregation requires repartitioning the data. Let’s dis-
cuss this in more detail in the next section.

7.2.3 Repartitioning the data

In the aggregation example, we saw how changing the key required a repartition.
Let’s have a more detailed conversation on why Kafka Streams repartitions the data
and how it works. Let’s talk about the why first. 

 We learned in a previous chapter that the key of a Kafka record determines the
partition. When you modify or change the key, there’s a strong probability it belongs
on another partition. So, if you’ve changed the key and you have a processor that
depends on it, an aggregation, for example, Kafka Streams, will repartition the data to
place records with the new key on the correct partition. Let’s look at figure 7.4, which
demonstrates this process in action.

 As you can see here, repartitioning is nothing more than producing records to a
topic and then immediately consuming them again. When the Kafka Streams–embed-
ded producer writes the records to the broker, it uses the updated key to select the
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new partition. Under the covers, Kafka Streams inserts a new sink node for producing
the records and a new source node for consuming them. Figure 7.5 shows the before
and after state where Kafka Streams updated the topology.

 The newly added source node creates a new sub-topology in the overall topology
for the application. A sub-topology is a portion of a topology that shares a common
source node. Figure 7.6 shows the updated version of the repartitioned topology
demonstrating the sub-topology structures. So, any processors after the new source
node are part of the new sub-topology.

 What is the determining factor that causes Kafka Streams to repartition? The
determining factor is whether you have a key changing operation and a downstream
operation relies on the key, such as a groupByKey, aggregation or join (we’ll get to
joins soon). Otherwise, if no downstream operations are dependent on the key, Kafka
Streams will leave the topology as is. Let’s look at a couple of examples in listings 7.7
and 7.8 to help clarify this point.

 
 

The keys are originally null, so distribution is done round-robin,
resulting in records with the same ID across different partitions.

Now with the key populated, all
records with the identical ID land
the same partition.

Original topic Repartition topic

(null, {"id":"5", "info":"123"} )

(null, {"id":"4", "info":"abc"} )

null, {"id":"5", "info":"456"} )

(null, {"id":"4", "info":"def"} )

("4", {"id":"4", "info":"def"} )

("4", {"id":"4", "info":"abc"} )

("5", {"id":"5", "info":"456"} )

("5", {"id":"5", "info":"123"} )

Partition 0

Partition 1

Partition 0

Partition 1

For repartitioning, set the ID
field as the key, and then write
the records to a topic.

Figure 7.4 Repartitioning: Changing the original key to move records to a different partition
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Key changing
node

Stateful
node

Source node
for toplogy

Source node
for toplogy

Key changing
node

Repartition
topic

Stateful
node

Sink node inserted by Kafka Streams

Internal topic created by Kafka Streams

Source node inserted by Kafka Streams

Figure 7.5 Updated topology where Kafka Streams adds a sink and source node for repartitioning of the data

Repartition
topic

Sub-topology 0

Sub-topology 0

Sub-topology 1

Figure 7.6 Adding a sink and source node for repartitioning creates a new sub-topology.
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myStream.groupBy(...).reduce(...)...   

myStream.map(...).groupByKey().reduce(...)...     

filteredStream = myStream.selectKey(...).filter(...);   
....
filteredStreaam.groupByKey().aggregate(...)...          

These code examples demonstrate that when you execute an operation where you
could change the key, Kafka Streams sets an internal Boolean flag, repartition-
Required, to true. Since Kafka Streams can’t possibly know whether you changed the
key, it will automatically repartition the data when it finds an operation dependent on
the key and the internal flag evaluates to true. On the other hand, even if you change
the key but don’t do an aggregation or join, the topology remains the same.

myStream.map(...).peek(...).to(...);       

myStream.selectKey(...).filter(...).to(...);   

In these examples, even if you updated the key, it doesn’t affect the results of the
downstream operators. For example, filtering a record depends on whether the predi-
cate evaluates to true or not. Additionally, since these KStream instances produce to a
topic, the records with updated keys will end up on the correct partition.

 So the bottom line is only to use key-changing operations (map, flatMap, trans-
form) when you need to change the key. Otherwise, it’s best to use processors that
only work on values (i.e., mapValues, flatMapValues, etc.). This way, Kafka Streams
won’t needlessly repartition the data. There are overloads to xValues methods that
provide access to the key when updating a value, but in this case, changing the key will
lead to undefined behavior.

NOTE When grouping records before an aggregation, only use groupBy
when you need to change the key; otherwise, favor groupByKey.

Before we wrap up coverage of repartitioning, we should talk about an additional
subject—inadvertently creating redundant repartition nodes and ways to prevent it.
Let’s say you have an application with two input streams. You need to perform an
aggregation on the first stream and join it with the second stream. Your code would
look something like the following listing (some details are omitted for clarity).

Listing 7.7 Examples of when repartitioning is needed

Listing 7.8 Examples of when repartitioning is not needed

Uses groupBy followed by a reduce

Executes a map followed 
by a groupByKey

Uses a selectKey to choose a new key; the
resulting KStream later calls groupByKey.

Uses a map, but no downstream 
operation depends on the key.

Uses a selectKey, but no downstream
operations rely on the key.
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KStream<String, String> originalStreamOne = builder.stream(...);

KStream<String, String> inputStreamOne =
  originalStreamOne.selectKey(...);     

KStream<String, String> inputStreamTwo = builder.stream(...);  

inputStreamOne.groupByKey().count().toStream().to(...);    

KStream<String, String> joinedStream =    
  inputStreamTwo.join(inputStreamOne,
                (v1, v2)-> v1+":"+v2,
                JoinWindows.ofTimeDifferenceWithNoGrace(...),
                StreamJoined.with(...);

....

This code example is simple enough. You take the originalStreamOne and change
the key since you’ll need to do an aggregation and a join with it. So you use a select-
Key operation, which sets the repartitionRequired flag for the returned KStream.
Then you perform a count() and a join with inputStreamOne. What is not apparent
here is that Kafka Streams will automatically create two repartition topics, one for the
groupByKey operator and the other for the join when you only need one repartition. 

 It will help to fully understand what’s going on here by looking at the topology for
this example in figure 7.7. Notice there are two repartitions, but you only need the
first one where the key is changed.

 When you use the key-changing operation on originalStreamOne, the resulting
KStream,inputStreamOne, now carries the repartitionRequired = true setting. So
any KStream resulting from inputStreamOne that uses a processor involving the key
will trigger a repartition. 

 What can you do to prevent this from happening? There are two choices here. The
first option is to manually repartition earlier, which sets the repartition flag to false
so any subsequent streams won’t trigger a repartition. The other option is to let Kafka
Streams handle it by enabling optimizations. Let’s talk about using the manual
approach first. 

NOTE While repartition topics take up disk space, Kafka Streams actively
purges records from them, so you don’t need to be concerned with the size on
disk. However, since repartitions increase processing latency due to increased
network round trips, avoiding redundant repartitions is always a good idea.

Listing 7.9 Changing the key and then aggregate and join

Changes the key of the 
original stream setting the 
"needsRepartition" flag

The second 
stream

Performs a 
group-by-key, 
triggering a 
repartition

Performs a join between inputStreamOne and
inputStreamTwo, triggering another repartition
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7.2.4 Proactive repartitioning

For the times when you might need to repartition the data yourself, the KStream API
provides the repartition method. The following listing shows you how to manually
repartition after changing a key (some details are omitted for clarity). 

KStream<String, String> originalStreamOne = builder.stream(...);
KStream<String, String> inputStreamOne =
  originalStreamOne.selectKey(...);          

KStream<String, String> inputStreamTwo = builder.stream(...);

KStream<String, String> repartitioned =
  inputStreamOne.repartition(Repartitioned        

Listing 7.10 Changing the key, repartitioning, and performing an aggregation and a join

Key changing
node

Source node
for toplogy

Repartition
topic I Repartition

topic II

Aggregation

State store

Some other stateful operation

Figure 7.7 Redundant repartition nodes due to a key changing operation occurring previously in the 
topology

Changes the key setting the 
"needs repartition" flag

Calls the repartition method and 
providing key-value Serdes and a
name for the repartition topic
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                .with(stringSerde, stringSerde)
                .withName("proactive"));

repartitioned.groupByKey().count().toStream().to(...);   

KStream<String, String> joinedStream = inputStreamTwo.join(...)   

.....

The code here has only one change, adding the repartition operation before per-
forming the groupByKey. As a result, Kafka Streams creates a new sink-source node
combination that results in a new sub-topology. Let’s take a look at the topology now
in figure 7.8, and you’ll see the difference compared to the previous one. 

Performs an aggregation on 
the repartitioned stream

Performs a join with the
repartitioned stream

Key changing
node

Source node
for toplogy

Aggregation

State store

Repartition
topic IRepartition Since the developer proactively

used a KStream.repartition,
no redundant repartitions occur.

Some other stateful
operation

Figure 7.8 Now, only one repartition node due to a proactive repartition, which allows for 
more stateful operations without repartitioning



2037.2 Adding stateful operations to Kafka Streams
This new sub-topology ensures that the new keys end up on the correct partition, and
equally as important, the returned KStream object has the needsRepartition flag set
to false. As a result, all downstream stateful operations that are descendants of this
KStream object don’t trigger any further repartitions (unless you change the key again). 

 The KStream.repartition method accepts one parameter, the Repartitioned
configuration object. Repartitioned allows you to specify:

1 The Serdes for the key and value
2 The base name for the topic
3 The number of partitions to use for the topic
4 A StreamPartitioner instance, should you need to customize the distribution

of records to partitions

Let’s pause on our current discussion and review some of these options.
 Providing a base name for the repartition topic is always a good idea. I’m using the

term base name because Kafka Streams takes the name you provide and adds a prefix
of <application-id>-, which comes from the value you supplied in the configs, and a
suffix of -repartition.

 Given an application ID of “streams-financial” and a repartition name of “stock-
aggregation,” results in a repartition topic named “streams-financial-stock-aggregation-
repartition.” The reason it’s a good idea always to provide a name is twofold. First, hav-
ing a meaningful topic name is always helpful to understand its role when you list
the topics on your Kafka cluster. Second, and more important, the name you pro-
vide remains fixed even if you change your topology upstream of the repartition.
Remember, when you don’t provide names for processors, Kafka Streams generates
names for them, and part of the name includes a zero-padded number generated by
a global counter.

 So, if you add or remove operators upstream of your repartition operation and you
haven’t explicitly named them, their names will change due to changes in the global
counter. This name shift can be problematic when redeploying an existing applica-
tion. In section 7.4.5, I’ll talk more about the importance of naming stateful compo-
nents of a Kafka Streams application.

NOTE Although there are four parameters for the Repartitioned object, you
don’t have to supply all of them. You can use any combination of the parame-
ters that suit your needs.

Specifying the number of partitions for the repartition topic is particularly useful in
two cases: co-partitioning for joins and increasing the number of tasks to enable
higher throughput. Let’s discuss the co-partitioning requirement first. When perform-
ing joins, both sides must have the same number of partitions (we’ll discuss why this is
when covering joins starting in section 7.3). So, by using the repartition operation,
you can change the number of partitions to enable a join without changing the source
topic, keeping the changes internal to the application. 
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7.2.5 Repartitioning to increase the number of tasks

The number of partitions drives the number of tasks, ultimately determining the
number of active threads an application can have. One way to increase the processing
power is to increase the number of partitions since that leads to more tasks and, ulti-
mately, more threads that can process records. Kafka Streams attempts to assign tasks
to all applications with the same ID evenly, so this approach to increase throughput is
particularly useful in an environment where you can elastically expand the number of
running instances. 

 While you could increase the number of partitions for the source topic, this might
not always be possible. The source topic(s) of a Kafka Streams application is typically
public, meaning other developers and applications use that topic. In most organiza-
tions, changes to shared infrastructure resources can be difficult.

 Let’s look at an example of performing a repartition to increase the number of
tasks (found in bbejeck.chapter_7.RepartitionForThroughput).

KStream<String, String> repartitioned =

initialStream.repartition(Repartitioned
            .with(stringSerde, stringSerde)
            .withName("multiple-aggregation")
            .withNumberOfPartitions(10));      

Now, this application will have 10 tasks, meaning there can be up to 10 stream threads
processing records driven by the increase in the number of partitions. Note that the
example of using 10 partitions here is arbitrary. The example only demonstrates how
to use the KStream.repartition method and does not imply the exact value to use in
a production system. 

 However, you need to remember that adding partitions for increased throughput
will work best when there is a relatively even distribution of keys. For example, if 70
percent of your key space lands on one partition, increasing the number of partitions
will only move those keys to a new partition. But since the keys’ overall distribution is
relatively unchanged, you won’t see any gains in throughput since one partition,
hence one task, is shouldering most of the processing burden.

 So far, we’ve covered how to repartition when changing the key proactively. But
this requires you to know when to repartition and always remember to do so. But
there’s a better approach using Kafka Stream’s optimizations. Using optimizations,
Kafka Streams will automatically handle redundant repartition topics for you. 

7.2.6 Using Kafka Streams optimizations

While you’re busy creating a topology with various methods, Kafka Streams builds a
graph or internal representation under the covers. You can also consider the graph
a logical representation of your Kafka Streams application. In your code, when you

Listing 7.11 Increasing the number of partitions for a higher task count

Increases the 
number of 
partitions
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execute the StreamBuilder#build method, Kafka Streams traverses the graph and
builds the final or physical representation of the application. At a high level, it works
like this: as you apply each method, Kafka Streams adds a node to the graph, as
depicted in figure 7.9. 

When you make an additional method call, the previous node becomes the parent of
the current one. This process continues until you finish building your application.

 Along the way, Kafka Streams will record metadata about the graph it’s building.
Specifically, it records if it has encountered a repartition node. Then, when using the
StreamsBuilder#build method to create the final topology, Kafka Streams will exam-
ine the graph for redundant repartition nodes. If found, it will rewrite your topology
to have only one! Optimizations are opt-in behavior for Kafka Streams, so to get this
feature working, you’ll need to enable optimizations by doing the following. 

streamProperties.put(StreamsConfig.TOPOLOGY_OPTIMIZATION_CONFIG,
                     StreamsConfig.OPTIMIZE);         
builder.build(streamProperties);   

So, to enable optimizations, first, you need to set the proper configuration because
they are disabled by default. The second step is to pass the properties object to the
StreamBuilder#build method. Then Kafka Streams will optimize your repartition
nodes when building the topology. 

NOTE If you have more than one key-changing operation with a stateful one
further downstream, the optimization will not remove that repartition. It only
takes away redundant repartitions for a single key-changing processor.

But when you enable optimizations, Kafka Streams automatically updates the topology
by removing the three repartition nodes preceding the aggregation and inserts a new
single repartition node immediately after the key-changing operation, which results in
a topology that looks like the illustration in figure 7.8.

 So, with a configuration setting and passing the properties to the StreamBuilder,
you can automatically remove any unnecessary repartitions! The decision on which

Listing 7.12 Enabling optimizations in Kafka Streams

KStream<String, String> myStream = builder.stream("topic")

myStream.filter(...).map(...).to("output")

Source
node Filter

node
Map
node

Sink
node

Each call to the KStream API
adds a node to the topology.

Figure 7.9 Each call to a KStream method adds a node to the graph.

Enables optimizations 
via configuration

Passes properties to the StreamBuilder
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one to use comes down to personal preference, but enabling optimizations guards
against you overlooking where you may need it.

 Now we’ve covered repartitioning, let’s move on to our next stateful operation,
joins. 

7.3 Stream-stream joins
Sometimes, you may need to combine records from different event streams to “com-
plete the picture” of what your application wants to accomplish. Say we have a stream
of purchases with the customer ID as the key and a stream of user clicks, and we want
to join them to connect pages visited with purchases. To do this in Kafka Streams, you
use a join operation. You may already be familiar with the concept of a join from SQL
and the relational database world, and the idea is the same in Kafka Streams. Let’s look
at an illustration to demonstrate the concept of joins in Kafka Streams in figure 7.10. 

Figure 7.10 shows that two event streams use the same item for the key, a customer ID,
but the values differ. In one stream, the values are purchases, and in the other, the val-
ues are links to pages the user clicked visiting the site.

NOTE Since joins depend on identical keys from different topics residing on
the same partition, the same rules apply when using a key-changing operation.
If a KStream instance contains repartitionRequired=true, Kafka Streams will
partition it before the join operation to ensure co-partitioning. So, all the
information in this chapter’s repartitioning section also applies to joins.

In this section, you’ll combine events from two streams with the same key to form a
new event. The best way to learn about joining streams is to look at a concrete exam-
ple so we’ll return to the world of retail. Consider a big box retailer that sells just
about anything you can imagine. To lure more customers into the store, the retailer
partners with a national coffee house and embeds a cafe in each store.

Purchase stream

User clicks

id

id

id

Purchase-clicks stream (result of join)

Joins take two streams with the same keys and produce a
new stream with the same key and a combined or derived value.

User-id is
the key.

purchase

url

purchase
url

Figure 7.10 Two streams with the same keys but different values



2077.3 Stream-stream joins
 To encourage customers to come into the store, the retailer has started a special
promotion where if you are a member of the customer club and you buy a coffee
drink from the embedded cafe and purchase anything in the store (in either order),
you’ll automatically earn loyalty points after your second purchase. The customers can
redeem those points for items from either store. The rules state that purchases must
made within 30 minutes of each other to qualify for the promotion.

 Since the main store and the cafe run on separate computing infrastructure, the
purchase records are in two event streams, but that’s not an issue as they both use the
customer ID from the club membership for the key. Hence, it’s a case of using a
stream-stream join to complete the task.

7.3.1 Implementing a stream-stream join

The next step is to perform the actual join. So, let’s show the code for the join (some
details are omitted for clarity) in the following listing. Since there are a couple of com-
ponents that make up the join, I’ll explain them in a section following the code exam-
ple. You’ll find the source code for this example in src/main/java/bbejeck/chapter_7/
KafkaStreamsJoinsApp.java. 

KStream<String, CoffeePurchase>
                     coffeePurchaseKStream = builder.stream(...)  

KStream<String, RetailPurchase>
                     retailPurchaseKStream = builder.stream(...)  

ValueJoiner<CoffeePurchase,
            RetailPurchase,
            Promotion> purchaseJoiner =
                                          new PromotionJoiner();   

JoinWindows thirtyMinuteWindow =
     JoinWindows.ofTimeDifferenceWithNoGrace(Duration.minutes(30));  

KStream<String, Promotion> joinedKStream =
    coffeePurchaseKStream.join(retailPurchaseKStream,   
                               purchaseJoiner,
                               thirtyMinuteWindow,
                                StreamJoined.with(stringSerde,  
                                                  coffeeSerde,
                                                  storeSerde)
                                      .withName("purchase-join")
                                      .withStoreName("join-stores"));

You supply four parameters to the KStream.join method:

 retailPurchaseKStream—The stream of purchases from to join with.
 purchaseJoiner—An implementation of the ValueJoiner<V1, V2, R> inter-

face. ValueJoiner accepts two values (not necessarily of the same type). The

Listing 7.13 Using the join() method to combine two streams into one

The 
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you will 
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ValueJoiner instance that
produces the joined result object
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max time
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in join

Constructs 
the join

StreamJoined
configuration

object
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ValueJoiner.apply takes both values for the key from the joined streams, per-
forms some implementation-specific logic, and returns a (possibly new) object
of type R. In this example, purchaseJoiner will extract some information from
both Purchase objects and return a PromotionProto object.

 thirtyMinuteWindow—A JoinWindows instance. The JoinWindows.ofTime-
DifferenceWithNoGrace method specifies a maximum time difference between
the two values to include them in the join. Specifically, the timestamp on the
secondary stream, retailPurchaseKStream, can only be a maximum of 30 min-
utes before or after the timestamp of a record from the coffeePurchaseK-
Stream with the same key.

 A StreamJoined instance—Provides optional parameters for performing joins.
In this case, it’s the key, the value Serde for the calling stream, and the value
Serde for the secondary stream. When joining records, you only have one key,
Serde; keys must be the same type. The withName method provides the name
for the node in the topology and the base name for a repartition topic (if
required). The withStoreName is the base name for the state stores used for the
join. I’ll cover join state stores usage in section 7.4. 

NOTE Serde objects are required for joins because Kafka Streams material-
izes join participants in windowed state stores. You provide only one Serde for
the key because both sides of the join must have a key of the same type.

Joins in Kafka Streams are one of the most powerful operations you can perform, and
they’re also one of the more complex ones to understand. Let’s take a minute to dive
into the internals of how joins work. 

7.3.2 Join internals

Under the covers, the KStream DSL API does a lot of heavy lifting to make joins oper-
ational. But it will be helpful for you to understand how joins operate under the cov-
ers. Kafka Streams creates a join processor with a state store for each side of the join.
Figure 7.11 shows how this looks conceptually. 

 When building the processor for the join for each side, Kafka Streams includes the
name of the state store for the reciprocal side of the join—the left side gets the name
of the right side store, and the right side processor contains the left store name. Why
does each side have the name of the opposite side store? The answer gets at the heart
of how joins work in Kafka Streams. Let’s look at another illustration in figure 7.12 to
demonstrate.

 When a new record comes in (we’re using the left-side processor for the coffee-
PurchaseKStream), the processor puts the record in its store but then looks for a
match by retrieving the right-side store (for the retailPurchaseKStream) by name.
The processor retrieves records with the same key and within the time range specified
by the JoinWindows.
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Now, the final part to consider is whether a match occurs. Let’s look at one more illus-
tration in figure 7.13 to help us see what’s going on.

 So now, after an incoming record finds a match by looking in the store from the
other join side, the join processor (the coffeePurchaseKStream in our illustration)
takes the key and the value from its incoming record and the value for each record
it has retrieved from the store and executes the ValueJoiner.apply method, which

Left-Side join processor

Store for left-side records Store for right-side records

Right-Side join processor

coffeePurchaseKStream.join(retailPurchaseKStream,....

Left side Right side

String rightSideStoreName="rightStore" String leftSideStoreName="leftStore"

Each join processor has its own state store and the name of the
store on the other side of the join.

Figure 7.11 In a stream-stream join, both sides of the join have a processor and state store.

A record comes in on the left-side
stream, and the left-side processor
puts the record in its own store.

Then it looks for a matching record
by key and timestamp range in the
right-hand store by retrieving
the right-hand store by name.

Left-side
processor

Right-side
processor

The right side follows the same process: it stores the incoming
record in its store and looks for a match in the left-side store.

1

2

Figure 7.12 Joining processors and looking in the other side’s state store for matches when a new 
record arrives
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l 
creates the join record specified by the implementation you’ve provided. From there,
the join processor forwards the key and join result to any downstream processors. 

 Now that we’ve discussed how joins operate internally, let’s discuss some of the join
parameters in more detail. 

7.3.3 ValueJoiner

To create the joined result, you create an instance of a ValueJoiner<V1, V2, R>. The
ValueJoiner takes two objects, which may or may not be of the same type, and it returns
a single object, possibly of a third type. In this case, ValueJoiner takes a Coffee-
Purchase and a RetailPurchase and returns a Promotion object. Let’s take a look at
the code (found in src/main/java/bbejeck/chapter_7/joiner/PromotionJoiner.java). 

public class PromotionJoiner
     implements ValueJoiner<CoffeePurchase,
                            RetailPurchase,
                            Promotion> {

    @Override
    public Promotion apply(
            CoffeePurchase coffeePurchase,
            RetailPurchase retailPurchase) {

    double coffeeSpend = coffeePurchase.getPrice();      
    double storeSpend = retailPurchase.getPurchasedItemsList()  
            .stream()
            .mapToDouble(pi -> pi.getPrice() * pi.getQuantity()).sum();
    double promotionPoints = coffeeSpend + storeSpend;    
    if (storeSpend > 50.00) {
        promotionPoints += 50.00;
    }
    return Promotion.newBuilder()    
            .setCustomerId(retailPurchase.getCustomerId())
            .setDrink(coffeePurchase.getDrink())

Listing 7.14 ValueJoiner implementation

After finding a match on the other-side
store, the processor will execute

Left-side
processor

Right-side
processor

Key, Value-Left

joiner.apply(key,left-value,right-value)

and then forward the result to the next
processor in the topology.

Right value
retrieved

Figure 7.13 When finding matching record(s), the processor executes the joiner’s apply method with the key, 
its record value, and the value from the other side.

Extracts how much 
was spent on coffee

Sums the tota
of purchased 
items

Calculates the 
promotion points

Builds and returns the 
new Promotion object
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            .setItemsPurchased(retailPurchase.getPurchasedItemsCount())
            .setPoints(promotionPoints).build();
}

To create the Promotion object, you extract the amount spent from both sides of the
join and calculate the total points to reward the customer. The ValueJoiner interface
only has one method, apply, so you could use a lambda to represent the joiner. But in
this case, you create a concrete implementation because you can write a separate unit
test for the ValueJoiner. We’ll come back to this approach in chapter 14. 

NOTE Kafka Streams also provides a ValueJoinerWithKey interface, which
allows access to the key for calculating the value of the join result. However,
the key is considered read-only, and changing it in the joiner implementation
will lead to undefined behavior. 

7.3.4 JoinWindows

The JoinWindows configuration object plays a critical role in the join process; it specifies
the difference between the timestamps of records from both streams to produce a join
result. Let’s refer to the illustration in figure 7.14 to understand the JoinWindows role. 

More precisely, the JoinWindows setting is the maximum difference before or after
the secondary (other) side’s timestamp can be from the primary side timestamp to
create a join result. From the example, the join window has a setting of 30 minutes. So
let’s say a record from the coffeeStream has a timestamp of 12:00 p.m.; for a corre-
sponding record in the storeStream to complete the join, it will need a timestamp
between 11:30 a.m. and 12:30 p.m.

 Two additional JoinWindows() methods are available, after and before, which
you can use to specify the timing and possibly the order of events for the join. Let’s say
you set the opening window of the join at 30 minutes, but you want the closing win-
dow to be shorter, say 5 minutes. For example, if a given record has a timestamp of
12:00 p.m., you’re OK with joining another record with a timestamp of at least 11:30

Timestamp of the calling side of the join
1633475077619 -> Tue Oct 05 19:04 EDT

The JoinWindow is 10 minutes

19:04

18:54 19:14

A record from the other side of the join needs
to have a timestamp within this window to be
eligible for joining.

Figure 7.14 The JoinWindows 
configuration specifies the max 
difference (before or after) from the 
timestamp of the calling side the 
secondary side can have to create a 
join result.
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a.m. but no later than 12:05 p.m. To do this, you’d use the JoinWindows.after method
(still using the example in listing 7.13). 

coffeeStream.join(storeStream,...,
    thirtyMinuteWindow.after(Duration.ofMinutes(5))....

Here, the opening window stays the same; the storeStream record can have a time-
stamp of at least 11:30 a.m., but the closing window for the join is shorter; the latest it
can be is now 12:05 p.m..

 The JoinWindows.before method works similarly in the opposite direction. Let’s
say you want to shorten the opening window, so you’ll now use the following code. 

coffeeStream.join(storeStream,...,
    thirtyMinuteWindow.before(Duration.ofMinutes(5))....

Now you’ve changed things so the timestamp of the storeStream record can be at
most 5 minutes before the timestamp of a coffeeStream record. So the acceptable
timestamps for a join (storeStream records) now start at 11:55 a.m. and end at 12:30
p.m.. You can also use JoinWindows.before and JoinWindows.after to specify the
order of arrival of records to perform a join.

 For example, to set up a join when a store purchase only happens within 30 min-
utes after a cafe purchase, you would use JoinWindows.of(Duration.ofMinutes(0)
.after(Duration.ofMinutes(30). To only consider store purchases before, you would
use JoinWindows.of(Duration.ofMinutes(0).before(Duration.ofMinutes(30)). 

7.3.5 Co-partitioning

To perform a join in Kafka Streams, you must ensure that all join participants are co-
partitioned, meaning they have the same number of partitions and the keys are the
same type. Co-partitioning requires all Kafka producers to use the same partitioning
class when producing to Kafka Streams source topics. Likewise, you need to use the
identical StreamPartitioner for any operations writing Kafka Streams sink topics via
the KStream.to() method. If you stick with the default partitioning strategies, you
won’t need to worry about partitioning strategies. 

 As you can see, the JoinWindows class gives you plenty of options to control joining
two streams. It’s important to remember that the timestamps on the records drive the
join behavior. The timestamps can be set by Kafka (broker or producer) or embedded
in the record payload. To use a timestamp embedded in the record, you’ll need to
provide a custom TimestampExtractor, and I’ll cover that and timestamp semantics in
chapter 9. 

Listing 7.15 Using the JoinWindows.after method to alter the closing side

Listing 7.16 The JoinWindows.before method changes the opening side
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7.3.6 StreamJoined

The final parameter to discuss is the StreamJoined configuration object. With Stream-
Joined, you can provide the Serdes for the key and the values involved in the join.
Note that when using Schema Registry, you’ll supply the appropriate Schema Registry–
aware Serdes to the StreamJoined object. Providing the Serdes for the join records is
always a good idea because you may have different types than the application-level
configurations. You can also name the join processor and the state stores used for
storing record lookups to complete the join. I’ll discuss naming state stores in the
section 7.4.5. 

 Before moving on from joins, let’s discuss other join options available. 

7.3.7 Other join options

The join in the listing for the current example is an inner join. With an inner join, if
either record isn’t present, the join doesn’t occur, and you don’t emit a Promotion
object. But other join options don’t require both records. Kafka Streams will emit a
result if the other side of the join isn’t present. These are useful if you need informa-
tion even when the desired record for joining isn’t available. 

7.3.8 Outer joins

Outer joins always output a record, but the result may not include both sides of the
join. You’d use an outer join when you wanted to see a result, regardless of whether it
was a successful join or not. If you need to use an outer join for the join example,
you’d do so like this:

coffeePurchaseKStream.outerJoin(retailPurchaseKStream,..)

An outer join sends a result that contains records from either side or both. For
example, the join result could be left+right, left+null, or null+right, depend-
ing on what’s present. Figure 7.15 demonstrates the three possible outcomes of the
outer join.

7.3.9 Left-outer join

A left-outer join always produces a result. But the difference from the outer-join is the
left or calling side of the join is always present in the outcome—left+right or
left+null, for example. You’d use a left-outer join when considering the left or call-
ing side stream records essential for your business logic. If you wanted to use a left-
outer join in listing 7.13, you’d do so like this:

coffeePurchaseKStream.leftJoin(retailPurchaseKStream..)

Figure 7.16 shows the outcomes of the left-outer join.
 You’ve learned the different join types, so what are the cases when you need to use

them? Let’s start with the current join example. An inner join makes sense since you
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are determining a promotional reward based on purchasing two items, each in their
stream. If there is no corresponding purchase on the other side, you don’t have an
actionable result, so to emit nothing is desired.

 For cases where one side of the join is critical and the other is beneficial but not
essential, a left-side join is a good choice where you’d use the critical stream on the

Join window

Calling
stream
record

Only the calling or left-side
record is available.

(left-side record, null)

Calling
stream
record

Both sides have records available.

(left-side record, right-side record)
Other
side

record

Other
stream
record

Only the other or right-side
record is available.

(null, right-side record)

Figure 7.15 Three outcomes are possible with outer joins: only the calling stream’s event, both 
events, and only the other stream’s event. 

Join window

Calling
stream
record

Only the calling or left-side
record is available.

(left-side record, null)

Calling
stream
record

Both sides have records available.

(left-side record, right-side record)
Other
side

record

Figure 7.16 Two outcomes are possible with a left-outer join: left and right side or left and null.
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left or calling side. I’ll cover an example when we get to stream-table joins in chap-
ter 8.

 Finally, for a case where you have two streams where both sides enhance each other,
but each one is important on its own, an outer join fits the bill. Consider IoT, where you
have two related sensor streams. Combining the sensor information provides a more
complete picture, but you want information from either side if it’s available.

 In the next section, we’ll go into the details of the workhorse of stateful operations,
the state store. 

7.4 State stores in Kafka Streams
So far, we’ve discussed the stateful operations in the Kafka Streams DSL API but
glossed over those operations’ underlying storage mechanisms. In this section, we’ll
look at the essentials of using state stores in Kafka Streams and the critical factors
related to using state in streaming applications in general. This will enable you to
make practical choices when using state in your Kafka Streams applications. 

 Before I go into any specifics, let’s cover some general information. At a high level,
the state stores in Kafka Streams are key-value stores, and they fall into two categories:
persistent and in-memory. Both types are durable because Kafka Streams uses changelog
topics to back the stores. I’ll talk more about changelog topics here and in section 7.4.1.

 Persistent stores store their records on a local disk, maintaining their contents over
restarts. The in-memory stores place records in memory, so they need to be restored
after a restart. All state stores use the changelog topic to restore their contents. To
understand how a state store uses a changelog topic for restoration, let’s look at how
Kafka Streams implements them.

 In the DSL, when you apply a stateful operation to the topology, Kafka Streams cre-
ates a state store for the processor (persistent is the default type). Along with the
store, Kafka Streams also makes a changelog topic backing the store. As Kafka Streams
writes records to the store, it also writes them to the changelog. Figure 7.17 demon-
strates this process.

So, as Kafka Streams places a record into a state store, it also sends it to a Kafka topic
that backs the state store. Earlier in the chapter, I mentioned that you don’t see every

Changelog topic

State storekey-value

As Kafka Streams
writes a key-value to
a store, it also gets
sent to the changelog
topic for durability.

Figure 7.17 As the key-value 
records get written to the store, 
they also get written to the 
changelog topic for data durability.



216 CHAPTER 7 Streams and state
update with an aggregation as Kafka Streams initially uses a cache to hold the results.
Only when Kafka Streams flushes the cache, either at a commit or when it’s full, do
records from the aggregation go to downstream processors. At this point, Kafka
Streams will produce records to the changelog topic.

NOTE If you’ve turned off the cache, every record gets sent to the state store,
meaning every record goes to the changelog topic.

7.4.1 Changelog topics restoring state stores

So, how does the Kafka Stream use the changelog topic? Let’s first consider the case of
an in-memory state store. Since an in-memory store doesn’t maintain its contents across
restarts, when starting up, any in-memory stores will rebuild their contents from the
head record of the changelog topic. So even though the in-memory store loses all its
contents on application shutdown, it picks up where it left off when restarted. 

 Persistent stores usually need to do a full restore only after losing all local states or
detecting data corruption. For persistent stores, Kafka Streams maintains a check-
point file, and it will use the offset in the file as a starting point to restore, instead of
restoring from scratch. If the offset is no longer valid, Kafka Streams will remove the
checkpoint file and restore it from the beginning of the topic. Kafka Streams has a
slightly different use of checkpoint files in exactly_once and exactly_once_v2 (EOS
mode). Kafka Streams deletes the checkpoint file after opening a state store in EOS
mode. And after a clean shutdown, Kafka Streams will re-generate it. Following this
process in EOS mode ensures that complete restoration occurs only after shutting
down due to an error. 

 This difference in restoration patterns brings an interesting twist to the discussion
of the tradeoffs of persistent or in-memory stores. While an in-memory store should
yield faster lookups as it doesn’t need to go to disk for retrieval, under “happy path”
conditions, the topology with persistent stores will generally resume processing faster
as it will not have as many records to restore.

 Another situation to consider is the makeup of running Kafka Streams applica-
tions. If you recall from our discussion on task assignments, you can dynamically
change the number of running applications, either by expansion or contraction.
Kafka Streams will automatically assign tasks from existing applications to new mem-
bers or add tasks to those still running from an application that has dropped out of
the group. A task responsible for a stateful operation will have a state store as part of
its assignment (I’ll talk about state stores and tasks next).

 Let’s consider the case of a Kafka Streams application that loses one of its mem-
bers; remember, you can run Kafka Streams applications on different machines, and
those with the same application ID are considered all part of one logical application.
Kafka Streams will issue a rebalance and reassign the tasks from the defunct applica-
tion. For any reassigned stateful operations, since Kafka Streams creates a new empty
store for the newly assigned task, it will need to restore from the beginning of the
changelog topic before it resumes processing. Figure 7.18 demonstrates this situation.
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So, by using changelog topics, you can be assured your applications will have a high
degree of data durability even in the face of application loss, but processing is delayed
until the store is entirely online. Fortunately, Kafka Streams offers a remedy for this
situation, the standby task. 

7.4.2 Standby tasks

Kafka Streams provides the standby task to enable fast failover from an application
instance dropping out of the group. A standby task “shadows” an active task by con-
suming from the changelog topic into a state store local to the standby. Then, should
the active task drop out of the group, the standby becomes the new active task. But
since it’s been consuming from the changelog topic, the new active task will come
online with minimum recovery time. 

NOTE To enable standby tasks, you need to set the num.standby.replicas
configuration to a value greater than 0, and you need to deploy an N + 1 num-
ber of Kafka Streams instances (with N being equal to the number of desired
replicas). Ideally, you’ll also deploy those Kafka Streams instances on separate
machines. 

While the concept is straightforward, let’s review the standby process by walking
through the illustration in figure 7.19.

 So, following along with the illustration, a standby task consumes records from the
changelog topic and puts them in its local state store. A standby task does not process
any records. Its only job is to keep the state store in sync with the state store of the
active task. Like any standard producer and consumer application, there’s no coordi-
nation between the active and standby tasks.

 With this process, since the standby stays fully caught up to the active task or, at a
minimum, it will be only a handful of records behind, when Kafka Streams reassigns
the task, the standby becomes the active task, and processing resumes with minimal

Changelog topic

State store

Machine A

State store

Machine B

Task migrated to another
machine so the state store
gets populated with records from
changelog before it resumes processing.

Figure 7.18 When a stateful task gets moved to a new machine, Kafka 
Streams rebuilds the state store from the beginning of the changelog topic.
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latency. As with anything, there is a tradeoff to consider with standby tasks. By using
standby, you end up duplicating data, but with the benefit of near-immediate failover,
it’s worth consideration.

NOTE Significant work went into improving the scaling out the performance
of Kafka Streams with Kafka KIP-441 (http://mng.bz/0Gml). When you enable
standby tasks and the standby instance becomes the active one, if at a later
time, Kafka Streams determines a more favorable assignment is possible, that
stateful task may get migrated to another instance.

So far, we’ve covered how state stores enable stateful operations and how the stores
are robust due to changelog topics and using standby tasks to enable quick failover.
But we still have some more ground to cover. First, we’ll go over state store assign-
ments; from there, you’ll learn how to configure state stores by specifying a store type,
including an in-memory store, and configuring changelog topics if needed. 

7.4.3 Assigning state stores in Kafka Streams

In the previous chapter, we discussed the role of tasks in Kafka Streams. I want to reit-
erate that tasks operate in a shared-nothing architecture and only in a single thread.
While a Kafka Streams application can have multiple threads and each thread can
have multiple tasks, they share nothing. Again, I emphasize this shared-nothing archi-
tecture because when a task is stateful, only the owning task will access its state store;
there are no locking or concurrency issues. 

 Going back to the stock aggregation example in section 7.2.2, let’s say the source
topic has two partitions, meaning it has two tasks. Let’s look at figure 7.20, which is an
updated illustration of the tasks assignment with state stores for that example.

 By looking at this illustration, you can see that the task associated with the state
store is the only task that will ever access it. Now, let’s discuss how Kafka Streams places
state stores in the filesystem. 

Changelog topic

State store

Machine A
active task

State store

Machine B
standby task

As the active task
writes records to the
changelog topic, the standby
task consumes them and
populates a state store.

Figure 7.19 A standby task shadows the active task and consumes from the 
changelog topic, keeping a local state store in sync with the store of the 
active task.

http://mng.bz/0Gml
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7.4.4 State stores’ location on the filesystem

In a stateful application, when Kafka Streams first starts up, it creates a root directory
for all state stores from the StreamsConfig.STATE_DIR_CONFIG configuration. If not
set, the STATE_DIR_CONFIG defaults to the temporary directory for the Java virtual
machine (JVM), followed by the system-dependent separator and then “kafka-streams.”
For example, on my MacOS, the default root directory for state stores is /var/folders/
lk/d_9__qr558zd6ghbqwty0zc80000gn/T/kafka-streams. 

NOTE The value of the STATE_DIR_CONFIG configuration must be unique for
each Kafka Streams instance that shares the same filesystem. 

Next, Kafka Streams appends the application ID, which you have to provide in the
configurations, to the path. Again, on my laptop, the path is /var/folders/lk/d_9__
qr558zd6ghbqwty0zc80000gn/T/kafka-streams/test-application/.

TIP To view the system-dependent temporary directory on your machine,
you can start a Java shell from a terminal window by running the jshell com-
mand. Then type in System.getProperty("java.io.tmpdir") and press the
Return key, and it will be displayed on the screen. 

The directory structure branches out to unique directories for each task. Kafka
Streams creates a directory for each stateful task using the sub-topology ID and par-
tition (separated by an underscore) for the directory name. For example, a stateful
task from the first sub-topology assigned to partition 0 would use 0_0 for the direc-
tory name.

 The next directory is named for the store’s implementation, rocksdb. So, at this
point, the path would look like /var/folders/lk/d_9__qr558zd6ghbqwty0zc80000gn/
T/kafka-streams/test-application/0_0/rocksdb. It is under this directory there is the
final directory from the processor (unless provided by a Materialized object, which
I’ll cover that soon). Let’s look at the following code listing of a stateful Kafka Streams
application and the generated topology names to understand how the final directory
gets its name. 

 

State store State store

Task 0 0_

Task 0 1_

Each task is the sole owner of the
assigned store and is the only one
to read and write to it.

Figure 7.20 Stateful tasks have 
a state store assigned to them.
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builder.stream("input")
       .groupByKey()
       .count()
       .toStream()
       .to("output")

This application has a topology named accordingly.

Topologies:
   Sub-topology: 0
    Source: KSTREAM-SOURCE-0000000000 (topics: [input])
      --> KSTREAM-AGGREGATE-0000000002
    Processor: KSTREAM-AGGREGATE-0000000002                 
     (stores: [KSTREAM-AGGREGATE-STATE-STORE-0000000001])   
      --> KTABLE-TOSTREAM-0000000003
      <-- KSTREAM-SOURCE-0000000000
    Processor: KTABLE-TOSTREAM-0000000003 (stores: [])
      --> KSTREAM-SINK-0000000004
      <-- KSTREAM-AGGREGATE-0000000002
    Sink: KSTREAM-SINK-0000000004 (topic: output)
      <-- KTABLE-TOSTREAM-0000000003

From the topology here, Kafka Streams generates the name KSTREAM-AGGREGATE-
0000000002 for the count() method. Notice its associated with the store named
KSTREAM-AGGREGATE-STATE-STORE-0000000001. So Kafka Streams takes the base
name of the stateful processor and appends a STATE-STORE and the number gener-
ated from the global counter. Now let’s take a look at the full path you would find this
state store: /var/folders/lk/d_9__qr558zd6ghbqwty0zc80000gn/T/kafka-streams/
test-application/0_0/rocksdb/KSTREAM-AGGREGATE-STATE-STORE-0000000001.

 So it’s the final directory KSTREAM-AGGREGATE-STATE-STORE-0000000001 in the
path that contains the RocksDB files for that store. Now, if you were to check the top-
ics on the broker after starting the Kafka Streams application, you’d see this name in
the list test-application-KSTREAM-AGGREGATE-STATE-STORE-0000000001-changelog.
This topic is the changelog for the state store; notice that Kafka Streams uses a nam-
ing convention of <application-id>-<state store name>-changelog for the topic. 

7.4.5 Naming stateful operations

This naming raises an interesting question: What happens if we add an operation
before the count()? Let’s say you want to add a filter to exclude certain records from
the counting. You’d update the topology like in the following listing. 

builder.stream("input")
       .filter((key, value) -> !key.equals("bad"))
       .groupByKey()
       .count()

Listing 7.17 A simple Kafka Streams stateful application

Listing 7.18 Updated topology with a filter

The name of 
the aggregate 
processor

The name of the 
store assigned to 
the processor
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       .toStream()
       .to("output")

Remember, Kafka Streams uses a global counter for naming the processor nodes, so
since you’ve added an operation, every processor downstream of it will have a new
name since the number will be greater by 1. The new topology will look like the fol-
lowing listing.

Topologies:
   Sub-topology: 0
    Source: KSTREAM-SOURCE-0000000000 (topics: [input])
      --> KSTREAM-FILTER-0000000001
    Processor: KSTREAM-FILTER-0000000001 (stores: [])
      --> KSTREAM-AGGREGATE-0000000003
      <-- KSTREAM-SOURCE-0000000000
    Processor: KSTREAM-AGGREGATE-0000000003               
     (stores: [KSTREAM-AGGREGATE-STATE-STORE-0000000002])   
      --> KTABLE-TOSTREAM-0000000004
      <-- KSTREAM-FILTER-0000000001
    Processor: KTABLE-TOSTREAM-0000000004 (stores: [])
      --> KSTREAM-SINK-0000000005
      <-- KSTREAM-AGGREGATE-0000000003
    Sink: KSTREAM-SINK-0000000005 (topic: output)
      <-- KTABLE-TOSTREAM-0000000004

Notice how the state store name has changed, which means there is a new directory
named KSTREAM-AGGREGATE-STATE-STORE-0000000002, and the corresponding chan-
gelog topic is now called test-application-KSTREAM-AGGREGATE-STATE-STORE-
0000000002-changelog.

NOTE Any changes before a stateful operation could result in the generated
name shift; that is, removing operators will have the same shifting effect.

What does this mean to you? When you redeploy this Kafka Streams application, the
directory will only contain some basic RocksDB files but not your original contents.
They are in the previous state store directory. Usually, an empty state store directory
does not present a problem, as Kafka Streams will restore it from the changelog topic.
Except in this case, the changelog topic is also new, so it’s also empty. So, while your
data is still safe in Kafka, the Kafka Streams application will start over with an empty
state store due to the name changes.

 While it’s possible to reset the offsets and process data again, a better approach is
to avoid a name-shifting situation altogether by providing a name for the state store
instead of relying on the generated one. In the previous chapter, I covered naming
processor nodes to provide a better understanding of what the topology does. But in
this case, it goes beyond a better understanding of its role in the topology: it makes
your application robust in the face of a changing topology.

Listing 7.19 Updated topology names

The new name for 
the aggregation 
operation

The new 
name for the 
state store
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 Returning to the simple count() example in this section, you’ll update the applica-
tion by passing the Materialized object to the count() operation. 

builder.stream("input")
       .groupByKey()
       .count(Materialized.as("counting-store"))       
       .toStream()
       .to("output")

By providing the name of the state store, Kafka Streams will name the directory on
disk counting-store, and the changelog topic becomes test-application-counting-
store-changelog, and both of these names are “frozen.” They will stay the same
regardless of any updates you make to the topology. It’s important to note that the
names of state stores within a topology must be unique. Otherwise, you’ll get a
TopologyException.

NOTE Only stateful operations are affected by name shifting. But since state-
less operations don’t keep any state, changes in processor names from topol-
ogy updates will have no effect.

The bottom line is to always name state stores and repartition topics using the appro-
priate configuration object. By naming the stateful parts of your applications, you can
ensure that topology updates don’t break compatibility. Table 7.1 summarizes which
configuration object to use and the operation(s) it applies to.

Naming state stores provides the added benefit of being able to query them while your
Kafka Streams application is running, providing live, materialized views of the
streams. I’ll cover interactive queries in the next chapter.

 So far, you’ve learned how Kafka Streams uses state stores to support stateful
operations. You also learned that the default is for Kafka Streams to use persistent
stores, and in-memory store implementations are available. In the next section, I will
cover how you can specify different store types and configuration options for the
changelog topics. 

Listing 7.20 Naming the state store using a Materialized object

Table 7.1 Kafka Streams configuration objects for naming state stores and repartition topics

Configuration object What’s named Where used

Materialized State store, changelog topic Aggregations

Repartitioned Repartition topic Repartition (manual by user)

Grouped Repartition topic groupBy (automatic repartitioning)

StreamJoined State store, changelog topic, repartition 
topic

Joins (automatic repartitioning)

Explicitly names 
the state store
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7.4.6 Specifying a store type

All the examples in this chapter use persistent state stores, but I’ve stated that you can
also use in-memory stores. So the question is, how do you use an in-memory store? So
far, you’ve used the Materialized configuration object to specify Serdes and the
name for a store, but you can use it to provide a custom StateStore instance. Kafka
Streams makes it easy to use an in-memory version of the available store types (so far,
I’ve only covered “vanilla” key-value stores, but I’ll get to session, windowed, and time-
stamped stores in the next chapter). 

 The best way to learn how to use a different store type is to change one of our exist-
ing examples. Let’s revisit the first stateful example used to keep track of scores in an
online poker game.

KStream<String, Double> pokerScoreStream = builder.stream("poker-game",
        Consumed.with(Serdes.String(), Serdes.Double()));

pokerScoreStream
        .groupByKey()
        .reduce(Double::sum,
                Materialized.<String, Double>as(
            Stores.inMemoryKeyValueStore("memory-poker-score-store"))  
                  .withKeySerde(Serdes.String())   
                  .withValueSerde(Serdes.Double()))      
        .toStream()
        .to("total-scores",
                Produced.with(Serdes.String(), Serdes.Double()));

So, by using the overloaded Materialized.as method, you provide a StoreSupplier
using one of the factory methods available from the Stores class. Notice that you still
pass the Serde instances needed for the store. And that’s all it takes to switch the store
type from persistent to in-memory. 

NOTE Switching to a different store type is straightforward, so I only have one
example here.

Why would you want to use an in-memory store? An in-memory store will give you
faster access since it doesn’t need to go to disk to retrieve values. So, a topology using
in-memory stores should have a higher throughput than one using persistent ones.
But there are tradeoffs you should consider.

 First, an in-memory store has limited storage space, and once it reaches its memory
limit, it could cause a crash from an OutOfMemoryError. Note that you can avoid the
memory issue by using the Stores.lruMap method, which will evict entries when
reaching its maximum configured size. The second consideration is when you stop
and restart a Kafka Streams application under happy-path conditions, the one with
persistent stores will start processing faster because it will have all its state already, but
the in-memory stores will always need to restore from the changelog topic. 

Listing 7.21 Performing a reduce in Kafka Streams updated to use in-memory stores

Passing a StoreSupplier
to specify an in-memory

store

Specifying
the Serdes
for the key

Specifying the 
Serdes for the value



224 CHAPTER 7 Streams and state
 Kafka Streams provides a factory class Stores that provides methods for creating
either StoreSuppliers or StoreBuilders. The choice of which one to use depends
on the Kafka Streams API. When using the DSL, you’ll use StoreSuppliers with a
Materialized object. You’ll use a StoreBuilder in the Processor API and directly add
it to the topology. We’ll cover the Processor API in chapter 10. 

TIP To see all the different store types, you can create a view of the JavaDoc
for the Stores class (http://mng.bz/eEez).

Now that you’ve learned how to specify a different store type, let’s move on to one
more topic to cover with state stores: how to configure the changelog topic. 

7.4.7 Configuring changelog topics

There’s nothing special about changelog topics. You can use any configuration param-
eters available for topics. But the default settings suffice for the most part, so you
should only consider changing the configurations when necessary. 

NOTE State store changelogs are compacted topics discussed in chapter 2. As
you may recall, the delete semantics require a null value for a key, so if you
want to remove a record from a state store permanently, you’ll need to do a
put(key, null) operation.

Let’s revisit the previous example, where you provided a custom name for the state
store. The data processed by this application also has a large key space. The changelogs
in Kafka Streams are compacted topics. Compacted topics use a different approach to
cleaning up older records.

 Instead of deleting log segments by size or time, log segments are compacted by
keeping only the latest record for each key—older records with the same key are
deleted. However, since the key space is large, compaction may not be enough, as the
size of the log segment will keep growing. In that case, the solution is simple: you can
specify a cleanup policy of delete and compact.

Map<String, String> changeLogConfigs = new HashMap<>();
changeLogConfigs.put("cleanup.policy", "compact,delete");

builder.stream("input")
       .groupByKey()
       .count(Materialized.as("counting-store")
              .withLoggingEnabled(changeLogConfigs))      
       .toStream()
       .to("output")

You can adjust the configurations for this specific changelog topic. Earlier, I men-
tioned that to turn off the caching that Kafka Streams uses for stateful operations,
you’d set the StreamsConfig.CACHE_MAX_BYTES_BUFFERING_CONFIG to 0. But since it’s

Listing 7.22 Setting a cleanup policy using Materialized

Uses the 
withLoggingEnabled 
method to set a 
configuration

http://mng.bz/eEez
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in the configuration, it is globally applied to all stateful operations. If you only wanted
to turn off the cache for a specific one, you can disable it by calling the Materialized
.withCachingDisabled() method when passing in the Materialized object. 

WARNING The Materialized object also provides a method to turn off log-
ging. Doing so will cause the state store not to have a changelog topic. Hence,
it is subject to getting in a state where it can’t restore its previous contents.
Only use this method if absolutely necessary. While working with Kafka
Streams, I’ve never encountered a good reason for using this method. 

Summary
 Stream processing needs state. Stateless processing is acceptable in many cases,

but you’ll need to use stateful operations to make more complex decisions.
 Kafka Streams provide stateful operations that reduce, aggregate, and join. The

state store is created automatically for you; by default, they use persistent stores.
 You can use in-memory stores for any stateful operation by passing a Store-

Supplier from the Stores factory class to the Materialized configuration object.
 To perform stateful operations, your records need to have valid keys. If your

records don’t have a key or you’d like to group or join records by a different
key, you can change it, and Kafka Streams will automatically repartition the data
for you.

 It’s important always to provide a name for state stores and repartition topics to
keep your application resilient from breaking when you make topology changes. 



The KTable API
This chapter will introduce you to a new API in Kafka Streams, the Ktable. The
KTable is an update or changelog stream. You’ve already used a KTable as any
aggregation operations in Kafka Streams result in a KTable. The KTable is an essen-
tial abstraction for working with records with the same key. In a KStream, records
with the same key are independent events. But in the KTable, a record updates the
previous one with the same key. 

 Why is learning about an update stream necessary? Sometimes, you’ll only care
about the latest entry for a given piece of data. For example, consider a user pro-
file. When someone updates their profile, only the newest entry is correct. All previ-
ous versions of the profile don’t matter. Compared to a relational database, the
event stream (a KStream) could be considered a series of inserts where the primary
key is an auto-incrementing number. Each insert of a new record has no relationship

This chapter covers
 Changelog streams, the KTable, and the 

GlobalKTable

 Aggregating records with a KTable

 Enriching event streams with joins

 Joining a KTable with another KTable
226
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to previous ones. But with a KTable, the key in the key-value pair is the primary key.
So, instead of inserting a new row, an update to the row results. 

 You’ll learn how to aggregate with a KTable. Aggregations in the KTable work dif-
ferently from the Kstream because you don’t want to group by primary key. You’ll only
ever have one record that way. Instead, you’ll need to consider how you want to group
the records to calculate the aggregate.

 You can use the KTable as a lookup table, enriching event stream records by join-
ing them with records in the table for additional details. You can also join two tables
together, even using a foreign key. You’ll also learn about a unique construct called
the GlobalKTable. The KTable is sharded by partition, meaning instance each only
contains the data for a single partition. But the GlobalKTable includes all records
from its underlying source topic across all application instances. 

8.1 KTable: The update stream
To fully understand the concept of an update stream, it will be helpful to compare it
with an event stream to see the differences between the two. Let’s use a concrete
example of tracking stock price updates (figure 8.1). 

You can see that each stock price quote is a discrete event, and they aren’t related.
Even if the same company accounts for many price quotes, you only look at them one
at a time. This view of events is how the KStream works—a stream of records. 

 Now, let’s see how this concept ties into database tables. Each record is an insert
into the table, but the primary key is a number increment for each insert, depicted in
a simple stock quote table in figure 8.2.

 Next, let’s take another look at the record stream. Because each record stands
independently, the stream represents inserts into a table. Figure 8.3 shows these two
concepts in action.

Imagine that you are observing a stock ticker displaying updated share prices in real time.

Each circle on the line represents a publicly traded stock’s share price adjusting to
market forces.

Time

Company AMEX
Amount $57.17

TS 12:20:38 1/20/17

Company AAVF
Amount $100.57

TS 12:14:35 1/20/17

CompanyAPPL
Amount $203.77

TS 12:15:57 1/20/17

Company FRLS
Amount $40.27

TS 12:18:41 1/20/17

Figure 8.1 A diagram for an unbounded stream of stock quotes
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Key                Value

ABVF 32225544289 105.36

APPL 333.66

Stock ID_ Timestamp Share Price_

32225544952

The rows from the table can be recast as key-value pairs.
For example, the first row can be represented by this key-value pair:

{
key: { stock_id:ABVF },

value: { ts: 32225544289, price: 105.36 }
}

Figure 8.2 A simple database table represents stock prices for companies. There’s a 
key column, and the other columns contain values. You can consider this a key-value 
pair if you lump the other columns into a “value” container.

This shows the relationship between events and inserts into a database. Even though it’s
stock prices for two companies, it counts as four events because you consider

each item on the stream as a singular event.

As a result, each event is an insert, and you increment the key by one for each insert into the table.

With that in mind, each event is a new, independent record or insert into a database table.

AMEX 105.36148907726274

Stock ID_ Share Price_Timestamp

RLPX 203.77148907726589

AMEX 107.051489077288531

RLPX 201.57148907736628

1

Key

2

3

4

Stock_IDAMEX
Share $105.36

TS 148907726274

Stock_ID RLPX
Share $203.77

TS 148907726589

Stock_IDAMEX
Amount $107.05

TS 1489077288531

Stock_ID RLPX
Amount $201.57

TS 1148907736628

Figure 8.3 A stream of individual events compared to inserts into a database table. You could similarly imagine 
streaming each row from the table.
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What’s important here is that you can view a stream of events in the same light as
inserts into a table, which can help give you a deeper understanding of using streams
for working with events. The next step is to consider the case where events in the
stream are related.

8.1.1 Updates to records or the changelog

Let’s say you want to track customer purchase behavior, so you take the same stream of
customer transactions but now track activity over time. If you add a key, the customer
ID, the purchase events can be related to each other, and you’ll have an update stream
instead of an event stream. 

 If you consider the stream of events as a log, you can view this stream of updates as
a changelog. Figure 8.4 demonstrates this concept.

Here, you can see the relationship between a stream of updates and a database table.
A log and a changelog represent incoming records appended to the end of a file. In a
log, you see all the records; in a changelog, you only keep the latest record for any
given key.

NOTE With a log and a changelog, records are appended to the end of the file
as they come in. The distinction between the two is that in a log, you want to see
all records, but in a changelog, you only want the latest one for each key.

The previous records
for these stocks have
been overwritten with
updates.

Latest records from
event stream

If you use the stock ID as a primary key, subsequent events with the same key are
updates in a changelog. In this case, you only have two records, one per company.

Although more records can arrive for the same companies, the records won’t accumulate.

AMEX 105.36148907726274

Stock ID_ Share Price_Timestamp

RLPX 203.77148907726589

AMEX 107.051489077288531

RLPX 201.57148907736628

Stock_IDAMEX
Share $105.36

TS 148907726274

Stock_ID RLPX
Share $203.77

TS 148907726589

Stock_IDAMEX
Amount $107.05

TS 1489077288531

Stock_ID RLPX
Amount $201.57

TS 1148907736628

Figure 8.4 In a changelog, each incoming record overwrites the previous one with the same key. You’d 
have four events with a record stream, but for an update stream, you have only two.
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To trim a log while maintaining the latest records per key, you can use log compaction,
which we discussed in chapter 2. You can see the effect of compacting a log in figure 8.5.
Because you only care about the latest values, you can remove older key-value pairs.

NOTE This section derived information from Jay Kreps’s “Introducing Kafka
Streams: Stream Processing Made Simple” (http://mng.bz/49HO) and “The
Log: What Every Software Engineer Should Know About Real-time Data’s
Unifying Abstraction” (http://mng.bz/eE3w).

You’re already familiar with event streams from working with the KStream. Now that
we’ve established the relationship between streams and tables, the next step is to com-
pare an event stream to an update stream. We’ll use an abstraction known as the KTa-
ble for a changelog or stream of updates. 

8.1.2 KStream and KTable API in action

Let’s compare the KStream and the KTable. We’ll do this by running a simple stock
ticker application. A KStream and a KTable will read and write the records to the con-
sole via the print() method. The stock ticker will produce three iterations of stock
quotes totaling nine records. 

NOTE The KTable does not have methods like print() or peek() in its API,
so to do any printing of records, you’ll need to convert the KTable from an
update stream to an event stream by using the toStream() method first. 

The following code listing is an example program for printing stock ticker results to the
console (found in src/main/java/bbejeck/chapter_8/KStreamVsKTableExample.java).

Before compaction After compaction

Offset ValueKey

Offset ValueKey

10 Afoo

11 Bbar

12 Cbaz

Dfoo13 Dfoo

14 Ebaz

15 Fboo

16 Gfoo

17 Hbaz

11 Bbar

15 Fboo

16 Gfoo

17 Hbaz

Figure 8.5 On the left is a log before compaction. You’ll notice duplicate keys with different values, 
which are updates. On the right is the log after compaction. You keep the latest value for each key, 
but the log is smaller.

http://mng.bz/49HO
http://mng.bz/eE3w
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You can find the source code at https://github.com/bbejeck/KafkaStreamsInAction
2ndEdition).

KTable<String, StockTickerData> stockTickerTable =
builder.table(STOCK_TICKER_TABLE_TOPIC);                
KStream<String, StockTickerData> stockTickerStream =
builder.stream(STOCK_TICKER_STREAM_TOPIC);         

stockTickerTable.toStream()
  .print(Printed.<String, StockTickerData>toSysOut()
  .withLabel("Stocks-KTable"));                          

stockTickerStream
  .print(Printed.<String, StockTickerData>toSysOut()
  .withLabel("Stocks-KStream"));                       

Figure 8.6 shows the results of running the application. As you can see, the KStream
printed all nine records. We’d expect the KStream to behave this way because it views
each record individually. In contrast, the KTable printed only three records because it
views records as updates to previous ones.

 From the KTable’s point of view, it didn’t receive nine individual records. The KTa-
ble received three original records and two rounds of updates, and it only printed the
last round of updates. Notice that the KTable records are the same as the last three
records published by the KStream. We’ll discuss the mechanisms of how the KTable
emits only the updates in the next section.

 The takeaway is that records in a stream with duplicate keys are updates, not new
records. A stream of updates is the central concept behind the KTable, the backbone
of stateful operations in Kafka Streams. 

Listing 8.1 KTable and KStream printing to the console

Using default Serdes
In creating the KTable and KStream, you didn’t specify any Serdes to use. The same
applies to both calls to the print() method. You could do this because you regis-
tered a default Serdes in the configuration like so:

props.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG,
   Serdes.String().getClass().getName());
props.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG,
   StreamsSerdes.StockTickerSerde().getClass().getName());

If you used different types, you’d need to provide Serdes in the overloaded methods
for reading or writing records.

Creates the 
KTable instance

Creates the 
KStream instance

KTable prints results 
to the console.

KStream prints results 
to the console.

https://github.com/bbejeck/KafkaStreamsInAction2ndEdition
https://github.com/bbejeck/KafkaStreamsInAction2ndEdition
https://github.com/bbejeck/KafkaStreamsInAction2ndEdition
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8.2 KTables are stateful
In the previous example, when you created the table with the builder.table() state-
ment, Kafka Streams also creates a StateStore for tracking the state, and by default,
it’s a persistent store. Since state stores only work with byte arrays for the keys and val-
ues, you’ll need to provide the Serde instances so the store can (de)serialize the keys
and values. Just as you can provide specific Serdes to an event stream with a Consumed
configuration object, you can do the same when creating a KTable:

builder.table(STOCK_TICKER_TABLE_TOPIC,
              Consumed.with(Serdes.String(),
                           StockTradeSerde()));

Now the Serdes you’ve provided with the Consumed object get passed along to the state
store. An overloaded version of StreamsBuilder.table also accepts a Materialized
instance, allowing you to customize the type of store and provide a name to make it
available for querying. We’ll discuss interactive queries later in chapter 13. 

 Creating a KTable directly using the KStream.toTable method is also possible.
Using this method changes the interpretation of the records from events to updates.
You can also use the KTable.toStream method to convert the update stream into an
event stream. We’ll discuss this conversion from an update stream to an event stream

Here are all three
events/records
for the KStream.

Here is the last
update record for
the KTable.

As expected, the values for the last KStream
event and KTable update are the same.

A simple stock ticker for three  ctitious companies with a data generatorfi
producing three updates for the stocks.The KStream printed all records as they
were received. The KTable only printed the last batch of records because they

were the latest updates for the given stock symbol.

Figure 8.6 KTable vs. KStream printing messages with the same keys
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when we discuss the KTable API in the next section. The main point is you create a
KTable directly from a topic, and Kafka Streams establishes a state store supporting
the KTable. 

 So far, I’ve talked about how the KTable handles inserts and updates, but what
about when you need to delete a record? To remove a record from a KTable, you send
a key-value pair with the value set to null. A null value acts as a tombstone marker,
ultimately getting deleted from the state store and the backing changelog topic,
hence deleted from the table.

 Like the KStream, the KTable is spread over tasks determined by the number of
partitions in the underlying source topic. This distribution by task means that the
records for the table can reside on separate application instances. 

8.3 The KTable API
The KTable API offers similar methods to what you’d see with the KStream—filter,
filterNot, mapValues, and transformValues. Executing these methods also follows
the fluent pattern; they return a new KTable instance. 

 While the functionality of these methods is very similar to the ones in the KStream
API, there are some differences in how they operate. The differences come into play
because a key-value pair where the value is null has delete semantics. 

 The delete semantics have the following effects on how the KTable operates:

1 If the incoming key-value pair contains a null value, the processor doesn’t eval-
uate the record and forwards it to the new table as a tombstone marker.

2 In the case of the filter and filterNot methods, records that don’t match the
predicate result in a tombstone, which is forwarded to the new table.

For example, see the KTableFilterExample in the bbejeck.chapter_8 package. It runs
a simple KTable.filter example where some of the incoming values are null and fil-
ters out some non-null values. But since we’ve discussed filtering previously, I won’t
review the example here, and I’ll leave it up to you to do this exercise on your own. 

 Let’s now discuss aggregations and joins with a KTable. 

8.4 KTable aggregations
Aggregations in the KTable operate differently than those in the KStream. Let’s illus-
trate this difference with an example. Imagine you build an application to track stock
prices. You’re only interested in any symbol’s latest price, so using a KTable makes
sense. Additionally, you’d like to track how different market segments perform. For
example, you’d group the stocks of Google, Apple, and Confluent into the tech mar-
ket segment. So, you’ll need to complete an aggregation and group different stocks by
their market segment. Your KTable aggregation would look like the following code
listing. 
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KTable<String, StockAlert> stockTable =
                builder.table("stock-alert",
                 Consumed.with(stringSerde, stockAlertSerde));   

stockTable.groupBy((key, value) ->
                    KeyValue.pair(value.getMarketSegment(), value),
                Grouped.with(stringSerde, stockAlertSerde))   
        .aggregate(segmentInitializer,    
                adderAggregator,           
                subtractorAggregator,         
                Materialized.with(stringSerde, segmentSerde))
        .toStream()

        .to("stock-alert-aggregate",
                Produced.with(stringSerde, segmentSerde));

You create the KTable, perform a groupBy, and update the key to be the market seg-
ment, which will force a repartition. Since the original key is the stock symbol, all
stocks from a given market segment may not reside on the same partition.

 But this requirement somewhat hides the fact that with a KTable aggregation,
you’ll always need to perform a groupBy operation. Why? Remember that with a KTable,
the incoming key is considered a primary key. Like in a relational database, grouping
by the primary key always results in a single record. So, you’ll need to group records by
another field because combining the primary key and the grouped field(s) will yield
results suitable for aggregation. Like the KStream API, calling the KTable.groupBy
method returns an intermediate table—KGroupedTable, which you’ll use to execute
the aggregate method. 

 The second difference also occurs. With the KTable aggregations, just like with the
KStream, the first parameter you provide is an Initializer instance to give the
default value for the first aggregation. However, you then supply two aggregators, one
that adds the new value and another one that subtracts the old value from the aggre-
gation for the previous entry with the same key. Let’s look at figure 8.7 to help make
this process clear. 

Listing 8.2 Aggregates with a KTable

Creates the
original KTable

Groups by 
the market 
segment and 
provides 
Serdes for the 
repartition 
via a Grouped 
configuration 
object

Creates the
aggregate

Provides
the adder

Aggregator

Provides the
subtractor
Aggregator

(key, newValue, aggr) -> {
aggr.add(newValue);
return aggr;

}

(key, previousValue, aggr) -> {
aggr.subtract(previousValue);
return aggr;

}

The adder adds
the new value for the key
into the aggregation.

The subtractor
removes the previous value for the
key from the aggregation.

Figure 8.7 KTable 
aggregations use an 
Adder aggregator and a 
Subtractor aggregator.
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Here’s another way to think about it. If you were to perform the same thing on a rela-
tional table, summing the values in the rows created by a grouping, you’d only get the
latest, single value per row. For example, the SQL equivalent of this KTable aggrega-
tion could look something like the following listing.

SELECT market_segment,
       sum(share_volume) as total_shares,
       sum(share_price * share_volume) as dollar_volume
       FROM stock_alerts
       GROUP BY market_segment;

When a new record arrives, the first step is to update the alerts table. Then, run the
aggregation query to get the updated information. This precise process is taken by the
KTable. The new incoming record updates the table for the stock_alerts, and it’s
forwarded to the aggregation. Since you can only have one entry per stock symbol in
the rollup, add the new record into the aggregation and then remove the previous
value for the given stock ticker.

 This process can be challenging to understand fully, so let’s clarify things by follow-
ing along with some illustrations. The current state of the table is that some records
have arrived, triggering the calculation of some aggregations (figure 8.8).

The aggregation is summing the number of shares in each transaction and the dollar
volume of the trade, which is calculated by multiplying the share price by the number
of shares. Next, a new stock trade occurs (figure 8.9).

 The stock trade involving CFLT arrives in the source topic and flows to the source
KTable; since there’s no previous entry for CFLT, it’s an insert-only operation into the
source table. Because the incoming trade involves the tech sector, that aggregation
needs updating (figure 8.10).

Listing 8.3 SQL of KTable aggregation

AAPL

DDOG

Source KTable

Key

{ Sector: Tech, Volume: 100, Price: 99.36 }
Tech

Aggregated KTable

Incoming records

XOM

SHEL

Records in the source KTable are grouped by sector,
and then dollar and stock volume are aggregated.

{ Sector: Energy, Volume: 100, Price: 80.40 }

{ Sector: Tech, Volume: 200, Price: 70.40 }

{ Sector: Tech, Volume: 300, Price: 60.60 }

Value

{ share volume: 300, dollar volume: 24,016 }_ _

Energy { share volume: 300, dollar volume: 26,220 }_ _

Figure 8.8 Records arrive at KTable, which calculates an aggregation for each one
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The aggregate updates by adding the number of traded shares to the share_volume
field and increasing the dollar_volume field by multiplying the number of shares by
the price per share field. Things get more interesting when another trade involving
CFLT arrives. Let’s take a look at what happens in figure 8.11.

 Since there’s an existing record for CFLT in the KTable, the natural thought is to
update the CFLT key with a new value. But Kafka Streams must first get the previous
entry from the state store and save it to a variable; then, it can add the new value to the
table. We must keep the last value because it’s needed to update the downstream
aggregation.

 Each of the different sector aggregations contains exactly one entry for each stock
it has. When a new entry arrives for the group, there’s a two-step update process. First,
the previous record is subtracted, and the new one is added to the aggregation. Addi-

AAPL

DDOG

Source KTable

Key

{ Sector: Tech, Volume: 100, Price: 99.36 } Tech

Aggregated KTable
XOM

SHEL

A new record arrives in the source Ktable

{ Sector: Energy, Volume: 100, Price: 80.40 }

{ Sector: Tech, Volume: 200, Price: 70.40 }

{ Sector: Tech, Volume: 300, Price: 60.60 }

Value

{ share volume: 300, dollar volume: 24,016 }_ _

Energy { share volume: 300, dollar volume: 26,220 }_ _

CFLT { Sector: Tech, Volume: 100, Price: 100.00 }

Figure 8.9 A new trade arrives and updates the source KTable

AAPL

DDOG

Source KTable

Key

{ Sector: Tech, Volume: 100, Price: 99.36 } Tech

Aggregated KTable
XOM

SHEL

Aggregate KTable updates with new information.
The share volume increases to 400 (300 + 100),
and the dollar volume increases to 34,016 (24,016 + 10,000)

{ Sector: Energy, Volume: 100, Price: 80.40 }

{ Sector: Tech, Volume: 200, Price: 70.40 }

{ Sector: Tech, Volume: 300, Price: 60.60 }

Value

{ share volume: 400, dollar volume: 34,016 }_ _

Energy { share volume: 300, dollar volume: 26,220 }_ _

CFLT { Sector: Tech, Volume: 100, Price: 100.00 }

Figure 8.10 Updating the aggregation with the newly arrived record
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tionally, since the key returned from the groupBy function may have changed, Kafka
Streams will forward the old and new values separately. Figure 8.12 summarizes the
entire KTable aggregation process.

Now that we’ve covered how the KTable aggregation works, let’s look at the Aggregator
instances. But since we’ve covered them in chapter 7, let’s only consider the adder

AAPL

DDOG

Source KTable

Key

{ Sector: Tech, Volume: 100, Price: 99.36 } Tech

Aggregated KTable
XOM

SHEL

{ Sector: Energy, Volume: 100, Price: 80.40 }

{ Sector: Tech, Volume: 200, Price: 70.40 }

{ Sector: Tech, Volume: 300, Price: 60.60 }

Value

{ share volume: 400, dollar volume: 34,016 }_ _

Energy { share volume: 300, dollar volume: 26,220 }_ _

CFLT { Sector: Tech, Volume: 100, Price: 100.00 }

CFLT { Sector: Tech, Volume: 200, Price: 123.00 } A new record arrives, so we'll need to update
the source KTable

Figure 8.11 Another trade for CFLT arrives and triggers a series of updating events.

New key-value

KTable state store

From topology

Previous value retrieved by key

New value stored for key

Old

Both old and new value sent
to aggregation processor

Aggregation state store

aggregator.remove(old)

The aggregation is
retrieved, and the old
value gets removed.

aggregator.add(new)

The aggregation is updated
with the new value and stored.

New

Figure 8.12 Summary of the entire KTable aggregation update process
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and subtractor logic. Even though this is just one example, the basic principles should
be valid for any KTable aggregation. Let’s start with the adder (some details are omit-
ted for clarity).

final Aggregator<String, StockAlert,
                                      SegmentAggregate> adderAggregator =
    (key, newStockAlert, currentAgg) -> {

  long currentShareVolume =
    newStockAlert.getShareVolume();   
  double currentDollarVolume =
    newStockAlert.getShareVolume() * newStockAlert.getSharePrice();  

    aggBuilder.setShareVolume(currentAgg.getShareVolume() +
      currentShareVolume);    
    aggBuilder.setDollarVolume(currentAgg.getDollarVolume() +
      currentDollarVolume);     
}

The logic is straightforward: take the share volume from the latest StockAlert and
add it to the current aggregate. Then, do the same with the dollar volume (after calcu-
lating it by multiplying the share volume by the share price).

NOTE Protobuf objects are immutable, so when updating values, we need to
create new instances using the generated builder for each object.

Now, for the subtractor, you guessed it—you’ll do the reverse and subtract the same val-
ues/calculations for the previous record with the same stock ticker symbol in the
given market segment. Since the signature is the same, I’ll only show the calculations
(some details are omitted for clarity).

long prevShareVolume = prevStockAlert.getShareVolume();
double prevDollarVolume =
      prevStockAlert.getShareVolume() * prevStockAlert.getSharePrice();

aggBuilder.setShareVolume(currentAgg.getShareVolume()
                           - prevShareVolume);      
aggBuilder.setDollarVolume(currentAgg.getDollarVolume()
                           - prevDollarVolume);     

Listing 8.4 KTable adder Aggregator

Listing 8.5 KTable subtractor Aggregator

Extracts the share volume 
from the current StockAlert

Calculates the dollar
volume for the current

StockAlert

Sets the total share volume by 
adding share volume from the latest 
StockAlert to the current aggregate

Sets the total dollar volume 
by adding the calculated 
dollar volume to the 
current aggregate

Subtracts the share 
volume from the 
previous StockAlert

Subtracts the dollar volume from
the previous StockAlert
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The logic is straightforward; you subtract the values from the StockAlert that Kafka
Streams replaced in the aggregate.

 In summary, the KTable aggregation keeps only the latest value for each unique
combination of the original KTable key and the key used to execute the grouping. It’s
worth noting here that the KTable API also provides reduce and count methods, for
which you’ll take similar steps. You first perform a groupBy and, for the reduce, provide
an adder and subtractor Reducer implementation. I won’t cover them here as it’s repeti-
tive, but there are examples of both reduce and count in the source code for the book. 

 At this point, we’ve wrapped up our coverage of the KTable API. Still, before we
move on to more advanced operations with the KTable, I’d like to review another
table abstraction, the GlobalKTable. 

8.5 GlobalKTable
I alluded to the GlobalKTable earlier in the chapter when we discussed that the KTable
is partitioned; hence, it’s distributed out among Kafka Streams application instances
(with the same application ID, of course). In other words, a KTable only contains
records from a single partition from a topic. What makes the GlobalKTable unique is
that it entirely consumes all data of the underlying source topic. Completely consum-
ing the topic means a full copy of all records is in the table for all application
instances. Let’s look at figure 8.13 to help make this clear. 

As you can see, the source topic for the KTable has three partitions, and with three appli-
cation instances, each KTable is responsible for one data partition. But the GlobalKTable
has the full copy of its three-partition source topic on each instance. Kafka Streams
materializes the GlobalKTable on local disk in a KeyValueStore, but it does not create

KTable 1 KTable 2 KTable 3

Topic with 3 partitions

GlobalKTable 1 GlobalKTable 2 GlobalKTable 3

Topic with 3 partitions

Each GlobalKTable fully consumes all 3 partitions
from the topic, so the table is replicated on each
instance.

Each KTable only consumes 1 partition
from the topic, so the table is sharded
on each instance.

Figure 8.13 GlobalKTable contains all records in a topic on each application instance.
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a changelog topic as the source topic serves as the backup for recovery. The following
code listing shows you how to create a GlobalKTable in your application.

StreamsBuilder builder = new StreamsBuilder();
GlobalKTable<String, String> globalTable =
  builder.globalTable("topic",
                      Consumed.with(Serdes.String(),
                                   Serdes.String()));

The GlobalKTable does not offer an API. So the natural question is, when should you
use GlobalKTable versus a KTable? The GlobalKTable is especially useful for broadcast-
ing information to every Kafka Streams instance for use in joins. For example, consider
you have a stream of purchases with a user ID. You can extract limited details with a
sequence of characters and numbers representing the person behind the transaction.

 But if you can add a name, address, age, occupation, etc., you will gain more insight
into these events. Since user information doesn’t change frequently (i.e., people don’t
change jobs or addresses weekly), a GlobalKTable is well suited for this reasonably
static data. Since each table has a full copy of the data, it shines when used to enrich a
stream of events.

 Another advantage coming from the GlobalKTable due to its consuming all parti-
tions of its source topic is that when joining with a KStream, the keys don’t have to
match. You can use a value from the stream to make a join. Look at the figure 8.14 to
help understand how this works.

Listing 8.6 Creating a GlobalKTable

GlobalKTable source topic

GlobalKTable

KStream source topic

Key value

Foo
Bar

Baz

500

600

333

....<A2, Foo>, <B3, Baz>

(key, value) -> value

KeyValueMapper

Result of KeyValueMapper (Baz) used for lookup in table

1

2

3

Join result is whatever the ValueJoiner
does with the combination of the
left and right side values

ValueJoiner(Foo, 500) -> 500

All partitions
are available so
no repartitioning
is required.

Figure 8.14 Since a GlobalKTable materializes all partitions of its source topic, you can use a value from a 
stream for a join.
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Since the stream contains data matching the table’s key in its value and the table
sources all partitions, you can extract the information needed to join the table from
its value. You’ll see how to put this in action and enrich a stream in an upcoming sec-
tion when we cover the KStream–GlobalKTable join in section 8.6.3. 

8.6 Table joins
In the previous chapter, you learned about performing joins with two KStream objects,
but you can also perform KStream–KTable, KStream–GlobalKTable, and KTable–KTable
joins. Why would you want to join a stream and a table? Stream–table joins represent
an excellent opportunity to create an enriched event with additional information.
Both sides must be co-partitioned for the stream–table and table–table joins, meaning
the underlying source topics must have the same number of partitions. Figure 8.15
gives you a view of what co-partitioning looks like at the topic level. 

As you can see, the concept is nothing more than different topics having the same
number of partitions. Now, let’s look at a couple of illustrations to help understand
why it’s so important to perform a join by first looking at an example of the positive
case. Let’s start with figure 8.16.

 From what you can see here, both keys are identical. As a result, both will land on
the 0 partition, so a join is possible in this case. Next, let’s look at the negative case in
figure 8.17.

 So even though the keys are identical, because the number of partitions differs, they
will end up on different partitions, meaning a join won’t work. However, this is not to say
that you can’t do something to enable joins. If you have KStream and KTable instances
you want to join but aren’t co-partitioned, you’ll need to do a repartition operation to

KStream<String, ClickEvent> clickStream = builder.stream("click-events");

KTable<String, User> userTable = builder.table("users");

0 1 2

Click-events topic
has 3 partitions.

0 1 2

Users topic
has 3 partitions.

Figure 8.15 Co-partitioned topics have the same number of partitions, so 
Kstream and KTable instances will have tasks working with the same 
partition.
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make it possible. We’ll look at an example of how to do this in section 8.6.1. Note that
since the GlobalKTable has a full copy of the records, there isn’t a co-partitioning
requirement for stream–global table joins. 

 Having covered the partitioning requirements, let’s give a concrete example of
why you’d want to join a stream with a table. Let’s say you have an event stream of
user activity on a website, a clickstream, but you also maintain a table of current
users logged into the system. The clickstream event object only contains a user ID
and the link to the visited page, but you’d like more information. Well, you can join
the clickstream against the user table, and you will have much more helpful infor-
mation about the usage patterns of your site in real time. The following listing is an
example to work through.

 
 

0

Click-events

0

users

Both topics are keyed by user ID

Id 123-ABC lands on partition 0 in both topics.

A join is possible because identical keys will
land on the same partitions.

1 2 1 2
Figure 8.16 Co-partitioned topics 
can join because the primary keys 
share the same partition.

0

Click-events

1

users

Both topics are keyed by user ID.

Id 123-ABC lands on partition 0

1 2 0

So a join is not possible as is because matching keys will not
be on the same partition.

hash(123-ABC) % 3 == 0

Id 123-ABC lands on partition 1

hash(123-ABC) % 2 == 1

Click-events users

Figure 8.17 Topics with a different number of partitions place the same keys on different 
partitions.
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KStream<String, ClickEvent> clickEventKStream =
                builder.stream("click-events",
                        Consumed.with(stringSerde, clickEventSerde));

KTable<String, User> userTable =
        builder.table("users",
                Consumed.with(stringSerde, userSerde));

clickEventKStream.join(userTable, clickEventJoiner)
        .peek(printKV("stream-table-join"))
        .to("stream-table-join",
                Produced.with(stringSerde, stringSerde));

Looking at the code in this example, you create the click-event stream and a table of
logged-in users. In this case, we’ll assume the stream has the user ID for the key, and the
user tables’ primary key is the user ID, so we can perform a join between them as is.
From there, you call the join method of the stream passing in the table as a parameter. 

8.6.1 Stream–table join details

At this point, I’d like to cover a few differences between the stream–table joins and the
stream–stream join you learned about in a previous chapter. Stream–table joins aren’t
reciprocal: the stream is always on the left or calling side, and the table is always on
the right. 

 Stream–table joins aren’t windowed. When the stream side has a newly arriving
record, Kafka Streams does a key lookup on the right side table. There’s no evaluation
of the timestamps involved for either side unless you’re using versioned state stores,
which we’ll over in the next section.

 To capture the join result, you provide a ValueJoiner object that accepts the value
from both sides and produces a new value that can be the same type on either side or
a new one altogether. You can perform an inner (equi) (demonstrated here) join or a
left-outer join with stream-table joins. 

 Only newly arriving records on the stream trigger a join; new records to the table
update the value for the key in the table but don’t emit a new join result. Let’s look at
a couple of illustrations to help clarify what this means. First, figure 8.18 illustrates the
KStream receiving an update.

 When the new record arrives, Kafka Streams will do a key lookup on the KTable
and apply the ValueJoiner logic, producing a join result. Now let’s look at the other
case, where the KTable receives an update (figure 8.19). 

 Here, you can see that when the KTable receives a new record, the entry for the
associated key is updated, but no join action results. With this example of stream–
table joins, timing is unimportant as the KTable has relatively static user data. But if
you’re working with a scenario where timing or temporal semantics are essential, you
need to consider that. 

Listing 8.7 Stream–table join to enrich the event stream
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KStream

Stream topic KTable source topic

<A, Foo>

KTableNew record in stream

Lookup in KTable state-store for "A"

Record found <A, Bar>

ValueJoiner returns Foo+Bar

1 2

3

Join

Figure 8.18 Stream–table joins produce a join result when the stream side has an update.

KStream

Stream topic KTable source topic

<A, Bar 2>_

KTable

New record in table

Record updated <A, Bar>

1

2 <A, Bar 2>_

No new join result only action is Kafka Streams
updates the table value.

Figure 8.19 When the table updates in a stream–table join, no updated join result occurs; only 
the table gets updated.
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8.6.2 Versioned KTables

Figure 8.20 demonstrates what the scenario of timing joins looks like. 

The illustration shows a KStream with an order or a dynamically priced commodity,
and the table contains the prices. When a user placed an order at time T2, the price
was set at $6; at time T3, the price was updated to $9. But the KStream record placed
at T2 arrives out of order. As a result, a join occurs with the T2 time order against
the T3 time price, which means the customer pays 8 * $9 = 72 instead of the expected
8 * $6 = 48.

 This outcome is because when a new record arrives in a KTable, Kafka Streams
automatically applies the update to the table. Any join with a KStream record will use
the current corresponding record in the table. But we need to prevent the out-of-
order pricing problem, which is the ability to incorporate time semantics into the join
so that the stream side record’s timestamp can be considered and the KTable will have
an update from a previous timestamp. Figure 8.21 demonstrates this concept.

 This illustration shows that even though the customer bid is out of order, the join
uses the correct price contained in the table at time T2, producing the expected and
correct join result. How can you put this temporal correct KTable into your Kafka
Streams application? It’s as simple as using a versioned state store to back the KTable.
To use a versioned state store, you’ll first create a versioned StoreSupplier with the
following code.

KeyValueBytesStoreSupplier versionedStoreSupplier =
        Stores.persistentVersionedKeyValueStore(
                        "user-details-table",      
                        Duration.ofSeconds(30));       

Listing 8.8 Creating a versioned state store

Key value

X
X $9

$6

T

2

3

The update for X
at T3 updates the
price from 6 to 9.

KTable

X 8

KStream

Join
X 2

T3T2

In the KStream, an order for X
is out of order at T2 but will
join against the latest record
from the table at a higher price.

But it should be
8 * 6 for $48.

8 * 9 = $72

Figure 8.20 An update to the KTable occurs, and a join against an out-of-order Kstream record 
applies an incorrect join result.

The name of the state store

The history retention 
period that older records 
are available for joins
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The critical point here is that the second parameter is a Duration object, which speci-
fies how long you want to make older records available. There is an overload of the
method that accepts a Duration object to determine the size of segments for storing
older records. 

 Next, you’ll need to plug the StoreSupplier into your KTable definition, as in the
following code listing.

KTable<String, User> userTable =
        builder.table(rightInputTableTopic,    
         Consumed.with(stringSerde, userSerde),      
         Materialized.as(versionedStoreSupplier));  

With these two steps, you have enabled versioned state stores in your KTable, allowing
for temporal correct joins. 

8.6.3 Stream–global table join details

One main point about the example in the previous section, clickstream, is that the
KStream had keys. But remember, it’s completely valid to have a topic with null keys;
hence, a KStream would also have null keys. In those cases, how can you perform a
join against a table? Sure, you could repartition as we have seen in previous chapters,
but is there a more direct approach? For the solution to that problem, let’s continue
to see how we can use Stream-GlobalTable joins. 

Listing 8.9 Plugging the StoreSupplier into the KTable definition

Key value

X
X $9

$6

T

2

3

KTable

X 8

KStream

JoinX 2

T3T2

In the KStream, an order for X
is out of order at T2.

8 * 6 = $48

With a versioned KTable, the join
for a record in the KStream
of T2 uses the same timestamp
range from the table resulting
in a temporal correct result.

Figure 8.21 A KTable with historical records by timestamp can perform temporal correct joins for an 
out-of-order Kstream record.

StreamBuilder table 
method creates the table.

The Consumed object 
for the Serdes

Plugs the versioned
StoreSupplier into the KTable
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 First, it’s the second join (KTable foreign key joins are the other) in Kafka Streams
that does not require co-partitioning. Remember that the GlobalKTable is not sharded
like the KTable but instead contains all the data of its source topic. As a result, global
tables support joins with streams where the stream’s key does not match the key of the
global table or it doesn’t exist at all. Now, let’s look at how to use this information with
a practical application.

 Let’s say you work for a manufacturer that uses IoT sensors to monitor tempera-
ture and proximity in the manufacturing process. The sensor information gets col-
lected and produced to a Kafka topic. The data engineers didn’t use any keys during
the initial service setup. Later, they created an additional topic containing metadata
for the different sensors. This time, the keys for this topic are the sensor ID, and the
value contains the metadata.

 You need to include the metadata for each sensor reading processed by your Kafka
Streams app. Given the sensor records have no keys set, this situation is tailor-made
for a stream–global table join. First, let’s look at setting up the stream–global table
join in Kafka Streams, and then we’ll go into the details of each component.

sensorKStream.join(sensorInfoGlobalKTable,          
                       sensorIdExtractor,      
                       sensorValueJoiner);    

With the KStream-GlobalKTable join, the second parameter is a KeyValueMapper that
takes the key and value of the stream and creates the key used to join against the
global table (in this way, it is similar to the KTable foreign-key join). The join result
will have the stream’s key (which could be a null value) regardless of the GlobalTable
key or what the supplied function returns. Figure 8.22 illustrates the key extractor to
help explain its role. 

You can see from this illustration the key selector knows which field from the value to
return for use as the key to complete the join. The key selector can use all information

Listing 8.10 KstreamGlobalTable join example

The GlobalTable 
to join against

A key selector to 
perform the join

The ValueJoiner instance
to compute the result

{ }, { sensorId, sensorReading}

key         value

key selector

The key selector
extracts the correct
field to use for the
key of the global table.

Figure 8.22 The key 
selector selects the 
desired field and returns 
it for the key in the join.
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available to create the key; you’re not limited to using a single field on the value. Now,
let’s take a look at the code.

KeyValueMapper<String, Sensor, String> sensorIdExtractor =     
   (key, value) -> value.getId();   

To refresh your memory, a KeyValueMapper accepts two parameters, a key and a value,
and returns a single object, in this case, a String representing the sensor ID. Kafka
Streams uses this ID to search the global table for a matching record. 

 Now let’s look into the ValueJoiner. First, take a look at figure 8.23, which demon-
strates the concept of what it does. 

This illustration shows that ValueJoiner accepts both records with the same key and
combines them into another object—the result of the join. The following code for the
ValueJoiner implementation shows the join result contents, which contains informa-
tion about the sensor. 

ValueJoiner<Sensor, SensorInfo, String> sensorValueJoiner =   
    (sensor, sensorInfo) -> String.format("Sensor %s   
                             located at %s
                             had reading %s",
                             sensorInfo.getId(),
                             sensorInfo.getLatlong(),
                             sensor.getReading());

Here, you can see the role of the ValueJoiner: it combines the sensor’s ID, location,
and the reading it recorded. You now have successfully joined a keyless KStream with a
GlobalKTable, and as a result, you’ve added the required information to augment the
sensor result. 

Listing 8.11 KeyValueMapper interface

Listing 8.12 The ValueJoiner implementation

Declares the
KeyValueMapper as a

Java functional interface
The implementation returns

the ID of the sensor.

{ sensorId, sensorReading}

Sensor
value joiner

{ id, latlong, generation, deployed }

SensorInfo

The value joiner combines the sensorReading
field from the sensor object and the ID and
latlong fields from the SensorInfo object
to create the join result.

Figure 8.23 ValueJoiner uses the left- and right-side objects of the join to create a new result object.

Declares the 
ValueJoiner as 
a Java lambda

Creates a String with 
the sensor reading 
and its ID and location
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 The semantics of global table joins are different. Kafka Streams process incoming
KTable records along with every other incoming record by its timestamp, so time-
stamps align the records with a stream–table join. But with a GlobalKTable, Kafka
Streams applies updates when records are available (figure 8.24).

The update of a GlobalKTable is done separately from the other components of the
Kafka Streams application. Kafka Streams uses a separate thread for updating any global
stores or tables. So, incoming records to a GlobalKTable are immediately applied
without considering the timestamps of those records. 

 Of course, every decision involves some tradeoff. A GlobalKTable means using
more local disk space and a more significant load on the broker since it does not
shard the data. The stream–global table join is not reciprocal; the KStream is always on
the calling or left side of the join. Additionally, only updates on the stream produce a
join result; a new record for the GlobalKTable only updates the internal state of the
table. Finally, either inner or left-outer joins are available.

 So what’s best to use when joining with a KStream, KTable, or GlobalKTable?
That’s a tricky question, as there are flexible guidelines. But a good rule of thumb is to
use a GlobalKTable for cases where you have relatively static lookup data you want to
join with a stream. If the data in your table is extensive, strongly consider using a KTable
since Kafka Streams will distribute it across multiple instances. 

GlobalKTableKTable

Source topic

Global-Stream Thread

The global thread runs
independent of the stream
threads.

Updates from the
global source topic
get applied immediately.

Source topic

Stream thread

Source topic

KStream

The stream thread inspects the
head record for each queue and will
process records for the ones with the
smallest timestamp.

stream TS < table TS

stream records processed first

Figure 8.24 Kafka Streams has a separate thread dedicated to updating GlobalKTables. These 
updates occur outside of the normal processing of incoming records.



250 CHAPTER 8 The KTable API
8.6.4 Table–table join details

Next, let’s talk about table–table joins. Joins between the two tables are similar to what
you’ve seen with the join functionality. You provide a ValueJoiner instance that calcu-
lates the join results and can return an arbitrary type. Also, the constraint that the source
topic for both sides has the same number of partitions applies here. Joins between two
tables are similar to stream–stream joins, except there is no windowing, but updates to
either side will trigger a join result. So when the left-side table receives a new record,
the action looks something like figure 8.25. 

A new record arriving on the left table causes the left table to be updated and poten-
tially triggers a join. The exact process occurs should the right-side table receive an
update (figure 8.26). As you saw with the left-side table update process, the same steps
occur when the right-side table involved in a join gets updated with a new record.

 But there’s a limitation with table–table joins, so let’s explore that now by working
through another example. Imagine now you work for a commodities trading firm and
use a KTable that tracks the latest contract proposal for a given client. Another KTable
has the latest prices for a given set of commodities. You need to join these two tables
to have a record of the client contract and the current price of the commodity.

 But there’s a problem here: the client contracts table uses the client’s ID as the pri-
mary key, and the commodity table uses the commodity code as its primary key. So,
with different primary keys, joining is out of the question (figure 8.27).

KTable source topic

<A, Foo>

KTable

New record in the table

Lookup in KTable state-store for "A"

Record found <A, Bar>

ValueJoiner returns Foo+Bar

1 2

3

Join

KTable source topic

KTable

Left table Right table

Table updated then

Figure 8.25 Left-side table in a table–table join is updated, and a new join result is triggered.
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KTable source topic

KTable New record in Table <A, Bar 2>_

Lookup in Left KTable state-store for "A"

Record found <A, Foo>

ValueJoiner returns Bar 2 + Foo_

1

2

3

Join

KTable source topic

KTable

Left table Right table

Table updated then

Figure 8.26 Right-side table in a table–table also potentially triggers a join.

KTable

Key value

CT
SH
GT

85.66
60.09
1,118.03

KTable

Topic "X" Partition 0

Topic "Y"

Partition 0

Key value

A
B
D

{CT; 25}

{GT; 333}

KTable

Partition 1

Key value

F

E
K

{SH; 47}

{CT; 19}
{GT; 101}

{SH; 32}

The KTable with the "Y" source topic have
values matching keys of the KTable sourced by topic "X".

But those values are
spread out across different
partitions, so we need a
different approach.Client bid tables

Commodity price table

Figure 8.27 Client contracts table uses the client ID for keys, but the value contains a code that matches the 
key on another table containing commodity information.
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You can see that the value of one table contains a field with the key of another table.
But the tricky part is that the contracts are spread out on different partitions while the
commodity codes, the primary key for the table, map to exactly one partition.

 So far, all of the examples of joins you’ve seen have involved tables with the same
primary key. A join is still possible if one table’s value contains a field that matches the
primary key of another table; in other words, you can use a foreign key join.

 In this particular case, you have this precise scenario, as the client contract table
value contains the code for the commodity. The KTable API offers a foreign key join
option to join the client contract and commodity table. Implementing the foreign key
join is straightforward: you use the signature of the KTable.join method that looks
like the following listing. 

clientContractTable.join(commodityPriceTable,     
               foreignKeyExtractor,   
               joiner);   

Setting up the foreign key join is done like any other table–table join except that you
provide an additional parameter, a java.util.Function object, that extracts the key
needed to complete the join. Specifically, the function extracts the key from the left-
side value to correspond with the key of the right-side table.

 If the function returns null, no join occurs. An additional note about foreign key
joins: since you’re joining against the table’s value on the right side, the tables
involved don’t need to be co-partitioned.

 Inner and left-outer joins support using a foreign key. As with primary-key table
joins, an update on either side will trigger a potential join result. But there are addi-
tional details we should discuss to understand how a foreign-key join works, so let’s
step through a series of illustrations to help you know what’s going on.

 In addition to extracting a key to complete the join, the contract action is fast and
furious, and sometimes there are updates to the contract table, so we’ll also need a
mechanism to ensure we don’t join with inaccurate results.

 Finally, we must account for the many-to-one relationship nature of the right-side
table to the left side. The value of a left table entry maps to exactly one entry on the
right side, but the right-side key will map to many values on the left since it’s mapping
to values and not a primary key. Let’s take a look at the first step—extracting the key
from the value of the table on the left side (figure 8.28).

 The join method extracts the key from the value in the left table using the sup-
plied function. Next, it computes a hash of the value, which you’ll see soon where this
comes into play.

 Then a record is produced to a repartition topic where the result of your provided
function is the key, and the value contains the left-side key and the hashed value. This
repartition topic is co-partitioned with the right table.

Listing 8.13 KTable foreign key join

Other table or right 
side of the join

The foreign key 
extractor functionThe ValueJoiner parameter
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Next, let’s take a look at what happens after the left side produces to the repartition
topic (figure 8.29).

We can think of the code handling the right side of the join as an actor or agent. This
“agent” consumes from the “incoming” repartition topic and uses the result to per-
form a lookup by key on the right-side table. It also materializes the key and hash in a
state store for use when there is an update to the right-side table, which you’ll learn
about in a subsequent step.

KTable

Topic "Y"

FK

A
B

D

{CT; 25}

{GT; 333}

{SH; 32}
foreignKeyExtractor = value -> value.getCode();

valueHash = hashFunc(value);

Repartition
topic

The foreign key (CT) gets extracted from the value,
and a hash of the original value is calculated
and sent to a repartition topic

Left side "Actor"

Key Value

Client bid table

Figure 8.28 Extracting the foreign key from the value, calculating a hash of the original value, and 
sending both to a repartition topic

KTable

Topic "X"Source repartition
topic

Right side "Actor" Key value

CT

SH
GT

85.66

60.09
1,118.03

Consumes from repartition topic
Does a Key lookup with the FK
on the "Right" side table

Result of lookup produced to a sink
repartition topic

Sink repartition
topic

Commodity price table

Figure 8.29 The right side of the join consumes the extracted key and performs a key lookup on 
the right-side table, sending results back to a result repartition topic.
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 After obtaining the lookup result (discarding any null results), the right-side
agent publishes another repartition topic, including the original value hash. Note that
the key for the outgoing results is the original one for the left table. As with the right
side, we can think of the code dealing with the left side as an agent for that part of the
join (figure 8.30).

The left-side actor consumes from the result repartition topic, performs a key lookup
on the left table, and performs a new hash on the value. If it matches the original
hash, the join result gets forwarded downstream, but if they don’t match, the results
are discarded as this means the value has changed and the foreign key has potentially
changed, so the result wouldn’t be valid.

 At this point, we’ve covered foreign key joins when there’s a new record or update
on the left-side table, so let’s look at the process when there’s an update to the right-side
table. The steps taken are different because we need to account for the fact that a single
record in the right-side table could map to many records on the left (figure 8.31).

 When the right-side table receives a new record, it will perform a prefix (consist-
ing of only the right-side key) scan on the materialized table, matching any previ-
ously sent foreign keys from a left-side table update. Then, the right-side actor will
produce all the results to the result repartition topic, and the left-side actor con-
sumes them following the same process for handling single join results from the
right-side table. 

If the old and new
hashes match, the
result is forwarded.

Sink repartition
topic

Key lookup with the PK
and a new hash of the value
is compared to the original one.

Figure 8.30 The left-side agent consumes from a result repartition topic, performs 
another lookup by the original key of the left side, and compares the value hash with 
the original.



255Summary
NOTE There aren’t corresponding explicit foreign key joins available in the
KStream API, and that is intentional. The KStream API offers the map and
selectKey methods, so you can easily change the key of a stream to facilitate
a join. 

At this point, we’ve covered the different joins available on the KTable and GlobalK-
Table. There’s more to cover with tables, viewing the contents of the tables with inter-
active queries and suppressing output from a table (KTable only) to achieve a single
final result. We’ll cover interactive queries in chapter 13. But we’ll get to suppression
in our next chapter when we discuss windowing. 

Summary
 The KTable is an update stream and models a database table where the primary

key is the key from the key-value pair in the stream. Records with the same key
are considered updates to previous ones with the same key. Aggregations with
the KTable are analogous to running a Select . . . GroupBy SQL query against
a relational database table.

 Performing joins with a KStream against a KTable is a great way to enrich an
event stream. The KStream contains the event data, and the KTable contains the
facts or dimension data.

KTable

Topic "X"

Presubscribe
repartition topic

Key value

CT

SH

GT

85.66

60.09

1,118.03

Presubscribe
repartition topic

Update to right-side
table

CombinedKey
State Store

Left-side fk records
are materialized using a
combined key consisting of
Right-side key-Left-side key.

Updated right-side
records do a prefix scan
with the updated right-side
key to find left-side table
"subscribers".

Any results found get produced to the
postsubscription topic, and  then the
left-side actor will assemble join results.

Commodity price table

Figure 8.31 After a right-side update, the actor scans the composite key state store and produces all matches 
to the result repartition topic.
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combined key consisting of
Right-side key-Left-side key.

Updated right-side
records do a prefix scan
with the updated right-side
key to find left-side table
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Any results found get produced to the
postsubscription topic, and  then the
left-side actor will assemble join results.

Commodity price table
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 It’s possible to perform joins between two KTables. You can also do a foreign
key join between two KTables.

 The GlobalKTable contains all records of the underlying topic as it doesn’t
shard its data. So, each application instance has all the records, making it suit-
able for acting as a reference table. Joins with the GlobalKTable don’t require
co-partitioning with the KStream. You can supply a function that calculates the
correct key for the join. 



Windowing
and timestamps
In previous chapters, you learned how to perform aggregations with KStream and
KTable. This chapter will build on that knowledge and allow you to apply it to get
more precise answers to problems involving aggregations. The tool you’ll use for
this is windows. Using windows or windowing is putting aggregated data into dis-
crete time buckets. This chapter teaches you how to apply windowing to your spe-
cific use cases.

 Windowing is critical to apply because, otherwise, aggregations will continue to
grow over time, and retrieving helpful information becomes difficult if all you have
is a giant ball of facts without much context. As a high-level example, consider
you’re responsible for staffing a pizza shop in the student union at your university
(figure 9.1). The shop is open from 11 a.m. to 5 p.m. Total sales usually amount to
20 pizzas (this is your aggregation).

This chapter covers
 Understanding the role of windows and 

the different types

 Handling out-of-order data

 Suppressing intermediate results

 Groking the importance of timestamps
257
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Determining how best to staff the shop is only possible with additional information, as
you only know the total sold for the day. So you are left to guess that 20 pizzas over 6
hours amounts to roughly 3 pizzas per hour (figure 9.2), easily handled by two student
workers, but is that the best choice?

From a course-grained aggregate, you can tell that half to three-quarters of those
sales, 10 to 15 pizzas, come between 12 p.m. and 1 p.m., the classic lunch rush. By
looking at your sales by the hour (a form of windowing!), your staffing needs become
more evident. While this is a fictitious example, you can see how applying windowing
can help get a better picture of the behavior driving an aggregation.

 Now, before we move on, there are some details I should mention upfront about
windowing. While both the KStream and KTable have aggregations, windowing is only
available on the KStream API. This is due to the nature of how both abstractions work. 

 Remember, KStream is an event stream where records with the same key are con-
sidered unrelated events. Figure 9.3 gives you an idea of aggregations with an event
stream.

 Looking at this picture, when aggregating KStream incoming records with the same
key, Kafka Streams will continue adding them, building up a larger whole. It’s a group-
ing over a timeline. This grouping lends itself naturally to windowing; from this illustra-
tion, you can take an aggregation of 30 minutes and break it down into three 10-minute
windows, and you’ll get a finer-grained count of activity for every 10 minutes.

 But with the KTable aggregations work a bit differently. Follow along with figure 9.4
to help you understand.

11 AM 5 PM

20 pizzas sold by the
end of the day

???staffing

Figure 9.1 Just looking at a 
large aggregation doesn’t give 
the full picture.

11 am 5 pm

20 pizzas sold by the
end of the day

Max staffing between
12 and 2 pm

1 10 5 3 1 0

Now tracking sales by hour

Figure 9.2 Analyzing sales by the hour (manual windowing) gives better insight into decisions.
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Remember, with a KTable, you first do a groupBy with a field other than the primary
key. But as new records arrive at the base table, Kafka Streams updates the previous
entry (with the same key) with the new one and removes the old entry from the aggre-
gation while adding the new one. So, each aggregation in a KTable is a combination

Time 30 minutes

Key  Aggregation (count)

A

B

10

8

Key  Aggregation (count)

A

B

15

11

KStream aggregation are calculations by key over time - each incoming Key
increases the count it easily lends itself to windowning.

Key  Aggregation (count)

A

B

10

8

Key  Aggregation (count)

A

B

3

3

Key  Aggregation (count)

A

B

2

0

10 minutes 10 minutes 10 minutes

3o minutes segmented into three 10-minute windows

Figure 9.3 KStream aggregations are groupings over time, naturally lending themselves to 
windowing.

Time 30 minutes

Key    Value

A

B

Key  Aggregation (count)

x 5

Base KTable

{x: 2, y: F}

{x: 3, y: A}

groupBy(x)

Key    Value

A

B

{x: 4, y: F}

{x: 3, y: A}

Key  Aggregation (count)

x 7
groupBy(x)

5 - 2 + 4 = 7

Previous A value Current A value

Each aggregation is a "point in time," not a grouping over time.

Figure 9.4 KTable aggregations are point-in-time groupings and don’t fit into 
windowing.
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of unique values, each representing a point in time, and as a result, it does not make
sense to have windowing. 

 Additionally, you’ll learn about different types of windows that are available. Some
windows have fixed time sizes, and others are flexible in size and adjust based on the
records in the event stream. You will also learn the use cases where each window type
provides the most value.

 Finally, you’ll also learn about the importance of timestamps in this chapter, as
they are the engine that moves windowing. Kafka Streams is an event-driven applica-
tion, meaning the record’s timestamps or event time drives the action in a window.
Let’s look at figure 9.5 to show what I’m talking about.

In Kafka Streams, a windowed operator keeps track of the highest timestamp it has
seen at any point, and time will only advance when a higher timestamp arrives. This
moving of timestamps is the key to opening and closing a window. By making the time-
stamp the center of the action, you can see how your event stream is unfolding as it’s
happening. 

9.1 Understanding the role of windows 
and the different types
In this section, you will work through an example to help you understand how to
apply windowing to gain more actionable information. Let’s say you work for a manu-
facturing firm producing the flux capacitor. Demand has been high since Dr. Brown
successfully created a time-traveling car. As a result, you’re under pressure to make as
many as possible, but there’s a catch. 

 If the temperature gets too high, the production line shuts down, causing delays.
So your goal is to monitor the temperature, and if it gets too high, slow down the pro-
cess, avoiding those costly production stoppages. To that end, you’ve installed some

One-minute time window for aggregation

Start End

First record

........

The window will close
when the timestamps
advance by 1 minute.

Timestamps from the events determine the window movement.

Last record

Timestamp 0 Timestamp + 60 seconds

Figure 9.5 Timestamps are the key to windowing, and they are the drivers of action.
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IoT sensors for temperature monitoring and will begin producing their results to a
Kafka topic. Next, you want to develop a Kafka Streams application to process those
IoT events, with an aggregation to count when the temperature gets too high. Figure
9.6 demonstrates the concept of what you’re trying to achieve.

So the concept is simple: create an aggregation that averages the temperature read-
ings at their locations and records the highest. We’ve previously covered aggregations
in KStreams in chapter 7, but it’s worth a quick review here.

KStream<String,Double> iotHeatSensorStream =
      builder.stream("heat-sensor-input",
                 Consumed.with(stringSerde, doubleSerde));
iotHeatSensorStream.groupByKey()   
          .aggregate(() -> new IotSensorAggregation(tempThreshold),   
                     aggregator,
                     Materialized.with(stringSerde, aggregationSerde))
          .toStream()
          .to("sensor-agg-output", Produced.with(
                        stringSerde, aggregationSerde));    

This simple Kafka Stream topology does your aggregating, and you get insight into the
temperatures during the manufacturing process of the flux capacitor. Although
you’ve seen aggregators before, let’s take a quick look at how this one works.

public class IotStreamingAggregator implements
                 Aggregator<String, Double, IotSensorAggregation> {
    @Override
    public IotSensorAggregation apply(String key,
                                      Double reading,
                                      IotSensorAggregation aggregate) {

    aggregate.temperatureSum  += reading;
    aggregate.numberReadings += 1;

Listing 9.1 Creating an aggregation to track IoT temperature sensor readings

Listing 9.2 Aggregator for IoT heat sensors
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    if (aggregate.highestSeen < reading) {
          aggregate.highestSeen = reading;
    }
    if (reading >= aggregate.readingThreshold) {
          aggregate.tempThresholdExceededCount += 1;
    }
    aggregate.averageReading =
           aggregate.temperatureSum / aggregate.numberReadings;

      return aggregate;
    }
}

Everything is simple with this code. It keeps a running count of the number of read-
ings and the sum of the readings for calculating an average and the number of times
the temperature goes above the established threshold. However, you quickly notice a
limitation with your current approach (depicted in figure 9.7): the aggregation num-
bers continue to build on previous ones.

As you can see, it becomes hard to determine when the data shows an actual spike in
temperature currently or if it is a previous one. While you could add some complexity
to your aggregation code, there’s a better way: add windowing to the aggregation (fig-
ure 9.8).

9.1.1 Hopping windows

With the addition of windowing to the aggregation, you are now segmenting your
results into separate slots or windows of time. Now, let’s look at the steps you’ll take to
add windowing (since I’ve covered aggregations before, I’m only going to describe
the new actions). 
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An aggregation will retain historical readings and continue
to grow over time - at this point, 12 over 100 degrees.

Figure 9.7 The aggregations continue to build over time, retaining all historical 
information.
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KStream<String,Double> iotHeatSensorStream =
  builder.stream("heat-sensor-input",
    Consumed.with(stringSerde, doubleSerde));
iotHeatSensorStream.groupByKey()                  
      .windowedBy(TimeWindows.ofSizeWithNoGrace(
                       Duration.ofMinutes(1))       
        .advanceBy(Duration.ofSeconds(10)))
        .aggregate(
➥ () -> new IotSensorAggregation(tempThreshold),    
         aggregator,
         Materialized.with(stringSerde, aggregationSerde))
         .toStream().to("sensor-agg-output",
           Produced.with(serdeString,
                        sensorAggregationSerde))    

The steps you’ll take are to add a windowedBy immediately after the groupByKey
method. The groupByKey returns a KGroupedStream, and its API includes all the options
to add windowing. After you add the windowedBy method, you’ll need to provide its sin-
gle parameter, the window instance for the aggregation. To do this, you’ll use the
TimeWindows class, which contains static factory methods for creating the window. 

 Now that you have some analysis, how do you want to see the data? Your team
decides it would be best to see the average temperatures (plus the highest seen) for the
last minute with updates every 10 seconds. In other words, every 10 seconds, you’ll get
temperature averages of the last minute. Figure 9.9 visualizes what this will look like.

 The name for this type of windowing is called a hopping window. A hopping win-
dow has a fixed size, 1 minute in this case, but it advances or hops every 10 seconds.

Listing 9.3 Adding windowing to the aggregation for the Iot temperature readings
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Figure 9.8 By using windowing, you can separate the aggregations into discrete 
blocks of time.
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Since the advance is less than the size of the window, each one could have overlapping
results, meaning some of the results in the previous window may be included in the
next. In this case, the overlap is desirable for comparison purposes.

 To achieve this hopping window, you’ll use TimeWindow.ofSizeWithNoGrace
(Duration.ofMinutes(1)). This specifies a window with a size of 1 minute. For now, I
will defer what the WithNoGrace part means until we completely cover all the window
types because the concept of grace applies equally to all of them. Next, to specify the
advance time of 10 seconds, you’ll chain an advanceBy(Duration.ofSeconds(10))
method call immediately after defining the window. 

 But immediately after you update your code, you notice that you now have a com-
piler error at the to("sensor-agg-output", Produced(..) portion of the topology
(or if you’re not using an IDE like IntelliJ, you get an error compiling from the com-
mand line). This error is because when you do a windowed aggregation, Kafka
Streams wraps the key in the Windowed class, which contains the key and the Window
instance. Figure 9.10 helps you visualize what’s going on. 

 Since the key type has changed, it doesn’t match the expected type inference from
the Serde used by the Produced configuration object. To remedy this compiler error,
you can either unwrap the key from the Windowed instance or change the Serde type
to work with the Windowed type and produce it to the output topic. 

 Before I show you the code for both solutions, the question arises: Which should
you pick? The answer entirely depends on your preferences and needs. As I said
before, the Windowed key contains not only the underlying key but the Window

Time
(Seconds)

6010

1 2 3 4

2 3 4 5 8

4 5 8 10

4 5 8 10 21

5 8 10 21 16

Each window is 60 seconds in length, but
it hops every 10 seconds, so there's
overlap of 50 seconds for each window.

Figure 9.9 Average temperatures of the past minute, reported every 10 seconds
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instance for the aggregation as well and, as a result, includes the start and end time of
the window, which is the very information needed to assess the effect. So, in the end, I
recommend keeping the window time information contained in the Windowed key. 

 Let’s first look at the first solution—unwrapping the underlying key.

KStream<String,Double> iotHeatSensorStream =
      builder.stream("heat-sensor-input",
                 Consumed.with(stringSerde, doubleSerde));
iotHeatSensorStream.groupByKey()
    .windowedBy(TimeWindows.ofSizeWithNoGrace(Duration.ofMinutes(1))
        .advanceBy(Duration.ofSeconds(10)))
    aggregate(() -> new IotSensorAggregation(tempThreshold),
      aggregator,
      Materialized.with(stringSerde, aggregationSerde))
      .toStream()
      .map((windowedKey, value) -> KeyValue.pair(windowedKey.key(),
        value))                      
      .to("sensor-agg-output",
        Produced.with(serdeString, sensorAggregationSerde))

To unwrap the underlying key, add a map operator, create a new KeyValue, and use the
Windowed.key() method. To maintain the Windowed key, you’ll take the steps in the
following code listing. 

Serde<Windowed<String>> windowedSerdes =    
        WindowedSerdes.timeWindowedSerdeFrom(String.class,   
                                              60_000L   
                                            );

Listing 9.4 Unwrapping the underlying key of a windowed aggregation

Listing 9.5 Keeping the Windowed key and updating the Serde to produce to a topic

Windowed

{
window : { start: 100 , end: 160},

key : 'X',

Value: 1000

}

Windowed key object

Window of the aggregation
with start and end time

The underlying key for the
aggregate

The aggregation value

Figure 9.10 Windowed aggregations wrap the key in a Windowed class 
containing the key and the window of the aggregation.

Uses a map 
to extract the 
underlying key

Creates a 
Serde for the 
Windowed key

Parameter 
representing 
the type of the 
underlying keyThe size of the window
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w
to
KStream<String,Double> iotHeatSensorStream =
      builder.stream("heat-sensor-input",
                 Consumed.with(stringSerde, doubleSerde));
iotHeatSensorStream.groupByKey()
    .windowedBy(TimeWindows.ofSizeWithNoGrace(Duration.ofMinutes(1))
      .advanceBy(Duration.ofSeconds(10)))
    aggregate(() -> new IotSensorAggregation(tempThreshold),
      aggregator,
      Materialized.with(stringSerde, aggregationSerde))
      .toStream()
      .to("sensor-agg-output",
        Produced.with(windowedSerdes, sensorAggregationSerde))  

Your first step is to use the WindowedSerdes class provided by Kafka Streams to create
the Serde for the Window and the original aggregation key. When creating the Serde,
you need to provide two parameters: the class of the aggregation key and the size of
the window in milliseconds. 

 Then, you place that new Serde (windowedSerdes) in the Produced.with method
as the first parameter since it’s for the key. From this point forward, I may use either
approach in the code examples, but my advice of maintaining the window in your
results still stands. 

 Now that you’ve solved your problems and started running your new windowed
aggregation application, you notice that overlapping results don’t quite fit your
analytical needs. You need to see which sensors are reporting higher temperatures
per a unique period. In other words, you want non-overlapping results—a tumbling
window. 

9.1.2 Tumbling windows

The solution for you in this case is to make the advance time of the window the same
as the size of the window; this way, you’re guaranteed to have no overlapping results.
Each window reports unique events—in other words, a tumbling window. Figure 9.11
illustrates how a tumbling window operates. 

 As you can see, since the window advances by the same amount of time as its size,
each window contains distinct results; there is no overlap with the previous one. Win-
dows with the same advance time as their size are considered tumbling windows. Tum-
bling windows are a particular case of hopping windows where the advance time is the
same as the window size.

 To achieve this in your code, you only need to remove the advanceBy call when
creating the window. When you don’t specify an advance time with a window, Kafka
Streams uses a default approach of setting it to be the same as the window size. The
following listing shows the updated code using tumbling windows. 
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indowSerdes
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Serde<Windowed<String>> windowedSerdes =
        WindowedSerdes.timeWindowedSerdeFrom(String.class,
                                              60_000L
                                            );

KStream<String,Double> iotHeatSensorStream =
      builder.stream("heat-sensor-input",
                 Consumed.with(stringSerde, doubleSerde));
iotHeatSensorStream.groupByKey()
    .windowedBy(TimeWindows.ofSizeWithNoGrace(Duration.ofMinutes(1))   
    aggregate(() -> new IotSensorAggregation(tempThreshold),
      aggregator,
      Materialized.with(stringSerde, aggregationSerde))
      .toStream()
      .to("sensor-agg-output",
        Produced.with(windowedSerdes, sensorAggregationSerde))

The code looks remarkably similar at this point, and it should; you only removed the
advanceBy method, but everything else remained the same. Of course, you could keep
the advanceBy and use the same value you did for the window size, but my advice is to
leave it off in the case of a tumbling window, as it reduces any ambiguity. 

 Now that you’re satisfied with the IoT sensor tracking approaches have developed,
you move on to a new issue. The demand for the flux capacitor continues to grow. To
help the business work more effectively with customers, the marketing department

Listing 9.6 Specifying a tumbling window by removing the advanceBy method
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Each window is 60 seconds in length, and it
advances by 60 seconds, so there's
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Figure 9.11 Getting unique results per window by having the window advance by 
the size of the window—a tumbling window

The window definition
is now a tumbling one

with the removal of
the advanceBy clause
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has started tracking page views and click events on the company website. Due to your
previous success, you decided to take on helping get a handle on these new events.

 But a quick look at the data and you realize that a different approach to windowing
would be helpful in this case. Here’s why the IoT sensors emitted records at a constant
rate and windowing the results fell cleanly into either a hopping or tumbling window.
But the pageviews and click events are a bit more sporadic, looking something like fig-
ure 9.12.

As you can see, user behavior is unpredictable and can span large or small amounts of
time. It needs a different type of window that can continue to grow as long as the activ-
ity continues. Kafka Streams provides what you need—a session window. 

9.1.3 Session windows

Session windows are different in that they will continue to grow in size as events arrive,
but only up to a certain point. When there’s been a gap in the activity of a defined
amount of time, the session closes, and for any subsequent actions after the gap, a new
session starts. Let’s look at an illustration in figure 9.13 to help cement your under-
standing. 

 From this picture, you can see events arriving and extending the size of the win-
dow. However, when a gap in the activity exceeds a given amount of time, a new ses-
sion starts for any newly arriving records. The inactivity gap is what makes session
windows different. Instead of creating a fixed-size window, you specify how long to
wait for a new activity before the session is considered closed. Otherwise, the window
continues to grow.

 Let’s review what you need to implement a session windowing solution. You’ll work
with an aggregation similar to what you’ve done with tumbling or hopping windows.

Time

Each represents online activity.

There's no real pattern to the behavior it
comes in various times and groupings followed by
"quiet" periods of no activity.

Gaps in activity

Figure 9.12 User behavior does not follow a particular pattern.
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The difference is you’ll need to specify using a SessionWindow. The Aggregator you
provide will need a Merger instance and a functional interface that knows how to
“merge” two sessions. It’ll make more sense to look at the overall code first; then, I’ll
explain how you specify session windows and the concept of session merging. The fol-
lowing listing shows the code you’ll use.

Serde<Windowed<String>> sessionWindowSerde =
                WindowedSerdes.sessionWindowedSerdeFrom(String.class);  

KStream<String, String> pageViewStream = builder.stream("page-view",
                                Consumed.with(serdeString,serdeString ))
pageViewStream.groupByKey()
    .windowedBy(SessionWindow.ofInactivityGapWithNoGrace(
      Duration.ofMinutes(2))         
    .aggregate(HashMap::new,    
        sessionAggregator,
        sessionMerger)  
    .toStream()
    .to("page-view-session-aggregates",
        Produced.with(sessionWindowSerdes, pageViewAggregationSerde))

This aggregation code is similar to the others you’ve seen so far (the topic names are
different, as are the Serdes, but those are implementation details). Note that for a
SessionWindow, you need to use the WindowedSerdes.sessionWindowedSerdeFrom to

Listing 9.7 Using a SessionWindow for tracking pageviews by a customer
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Figure 9.13 Session windows continue to grow in size up to an activity gap, and then 
a new session starts.
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create the correct Serde instance. Other than that, the heart of what you’re doing dif-
ferently here is at annotation two, specifying a SessionWindow. 

 To use sessions for the aggregation, you use the SessionWindow.ofInactivity-
GapWithNoGrace method to define the window type. The parameter you provide is not
for the window size but for the amount of inactivity before the window closes. The
window operator determines this period by event timestamps. Now, let’s dig into the
details of the aggregation code. 

 Before diving into the Merger code, let’s take a quick look at the aggregation code
since this is new. 

public class PageViewAggregator
            implements Aggregator<String, String, Map<String, Integer>> {

    @Override
    public Map<String, Integer> apply(String userId,
                                      String url,
                                      Map<String, Integer> aggregate) {

      aggregate.compute(url, (key, count)
                               -> (count == null) ? 1 : count + 1);  
      return aggregate;
    }

}

The aggregation uses a HashMap and the Map.compute method to keep track of the pages
viewed and a count of the number of times a user goes to each one in a given session. 

 Now, let’s get into the Merger object. The Merger interface is a single abstract
method that accepts three parameters, the aggregation key, and two aggregates. The
two parameters are the current aggregate and the next aggregate to combine/aggre-
gate into the overall aggregation for the session window. When Kafka Streams exe-
cutes the Merger.apply method, it takes the two aggregates and combines or merges
them into a new single aggregation. The following listing provides the code for our
pageview session merger implementation. 

public class PageViewSessionMerger
              implements Merger<String, Map<String, Integer>> {

    @Override
    public Map<String, Integer> apply(String aggKey,
                                      Map<String, Integer> mapOne,
                                      Map<String, Integer> mapTwo) {

        mapTwo.forEach((key, value)->
            mapOne.compute(key, (k,v) -> (v == null) ? value : v + value

Listing 9.8 Aggregation of pages viewed and count of times visited

Listing 9.9 Merging two session aggregates into a new single one

Using the Map.compute method to
keep a count of the number of times

a user visits a page
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        ));
        return mapOne;
    }
}

The merger’s action is simple: combining the pageview tracking HashMap contents
into one that contains the combined information for both. The reason for merging
session windows is that an out-of-order record could connect two older sessions into a
single larger one. The process of merging sessions is interesting and is worth explain-
ing. Figure 9.14 illustrates this session merging process.

As you can see, each incoming record results in a new session (a SessionWindow) with
a start and end time based on that record’s timestamp. Kafka Streams then searches for
all session windows for the given key with a timestamp range of current record time-
stamp—window.inactivityGap to current record timestamp + window.inactivity-
Gap. This search will likely yield one session window since previous records within the
inactivity gap would have merged all previous windows. 

 It’s important to note that since Kafka Streams fetches previous sessions by time, it
guarantees that the merger is applied in order of arrival, meaning it computes
merged aggregates in time order. 

9.1.4 Sliding windows

You can now track user behavior with a SessionWindow, but you’d like to use one more
type of analysis. You would also like to view the click events within 10 seconds of each
other in a 1-minute window because it’s essential to observe how users navigate to dif-
ferent pages on the site before purchasing. You can accomplish this with a Sliding-
Window in Kafka Streams. It combines the characteristics of TimeWindows in that it’s
fixed in size and SessionWindows because the window start and stop times are deter-
mined by record timestamps. But you want this done continuously over the stream of
records, as demonstrated in figure 9.15. 

Each incoming
record creates
a new session window.

But since it arrives within the
activity gap, Kafka Streams merges
the new session into the existing session.

Session extending

Figure 9.14 Merging session windows combines two sessions into one.



272 CHAPTER 9 Windowing and timestamps
The window start and end are determined only by the timestamps on the records,
but the size of the window remains fixed at 30 seconds. While you could simulate a
sliding window by creating a hopping window of 30 seconds with a 1-millisecond
advance, it would be very inefficient. I’ll explain why after we review how you imple-
ment a sliding window.

 You’ll use the SlidingWindows.ofTimeDifferenceWithNoGrace method to imple-
ment sliding windows. It takes one parameter, the maximum time difference between
records, expressed with a Duration object. 

 In sliding windows, the start and end times are inclusive, unlike hopping and tum-
bling windows, where the start is inclusive but the end time is exclusive. Another dif-
ference is that sliding windows “look back” for other invents to include in their
windows. Let’s look at another illustration in figure 9.16 to help you understand.

 Let’s step through this drawing: record 1 arrives, and it creates a new window with
an ending of its timestamp and a start of timestamp minus the maximum record dif-
ference. But there are no events within 10 seconds, so it’s by itself. Now, record 2
arrives, creating a new window, and this time, since record 1’s timestamp is within the
time difference, it’s included in the window. So, with a sliding window, each incoming
record results in a new window, and it will “look back” for other events with time-
stamps within the time difference to include. Otherwise, the code you’ll write is the
same as you’ve done for the other aggregations. Listing 9.10 shows the complete code
example for a sliding window (some details are omitted for clarity).
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Figure 9.15 Sliding windows provide a continuous view of changes in events.
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KStream pageViewStream = builder.stream("page-view",
                                Consumed.with(serdeString,pageViewSerde))
pageViewStream.groupByKey()
    .windowedBy(SlidingWindows.ofTimeDifferenceWithNoGrace(
        Duration.ofSeconds(30))        
      .aggregate(HashMap::new,
    pageViewAggregator)                     
    .toStream()
    .to("page-view-sliding-aggregates",
      Produced.with(windowedSerdes, pageViewAggregationSerde))

SlidingWindows.ofTimeDifferenceWithNoGrace(Duration.ofSeconds(30)) is the cen-
tral part of the code described in the previous paragraph, setting the window type to

Listing 9.10 Page view aggregation with sliding windows

Time
(Seconds)1 2

Window size is 30 seconds
with a max time difference
of 10 seconds.

1

Record 1 comes into the event stream creating a new window, but
there's no previous record within 10 seconds.

1 2

Record 2 arrives,creating a new window, but it also includes record
1 since it occurred within the defined time difference.

Window start is
record 1
timestamp - difference. Window end is

record 1 timestamp.

Window start is
record 2
timestamp - difference. Window end is

record 2 timestamp.

Figure 9.16 Sliding windows starting and ending times are inclusive and look back for events occurring 
within the defined time difference.

Specifies a SlidingWindow 
for the aggregation

Adds the Aggregator instance 
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sliding. Since the Aggregator is the same one you used in the session window exam-
ple, I won’t review that again here.

 What’s important to remember about sliding windows is that while there may be
overlap between windows (each window may contain records seen in the previous
one), Kafka Streams only creates a new window when a new record comes into it or
when one falls out, each one will have a unique set of results, as shown in figure 9.17.

Following along in the illustration, the first record arrives, creating a new window. A
second record comes, which again begins a new window and includes the first record.
Then, a third record arrives, creating a third window. But since record 1 is outside the
time difference, only record 2 is included in this latest window. Then, as time
advances, the second record falls out, generating a fourth window.

 Earlier in this section, I mentioned why a sliding window is highly preferred over a
hopping window with minimal advanced times. Figure 9.18 helps with the explanation.

 A sliding window only evaluates the aggregation when a new record enters or
leaves the window; this is why each sliding window contains unique results. So, even
though it advances by 1 millisecond, Kafka Streams only evaluates it when the con-
tents of the window change.

 But a hopping window will always evaluate the contents. Figure 9.18 shows that
over time, the sliding window only performs an evaluation when a new record arrives

Time
(Seconds)

1

1 2

32

Record 1 arrives,
and a new window
is created.

Record 2 arrives, and a second window
gets created.

3

Record 3 results in a third window, but
record 1 is outside the time difference.

A fourth window is create as record 2
drops out of the window as it advances.

Figure 9.17 Sliding windows evaluate only when new records come into the window or when they 
fall out.
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or leaves the window. Meanwhile, the hopping window equivalent would have evalu-
ated (aggregated) N times even though the content only changed once, leading to
redundant calculations.

 This wraps up our coverage of the window types available in Kafka Streams. Before
we move on, I’d like to include a final summary discussion to cover additional details
that will help you build windowed applications. 

9.1.5 Window time alignment

First, let’s discuss how the different windows align with time, meaning how Kafka
Streams determines the starting and ending times. Any window created with the
TimeWindows class aligns to the epoch. Let’s look at two illustrations to help us under-
stand what this means. First, figure 9.19 defines what “aligned to the epoch” means. 

 Windows aligned to the epoch means the first window starts with [0, window-
size) until it reaches the current time. It’s important to realize these windows are log-
ical; there aren’t that many window instances in Kafka Streams. That’s what’s meant by
“windows align to the epoch.” Time is represented in window-sized intervals based on
the Unix epoch time (time elapsed from January 1, 1970). Now let’s look at figure 9.20,
which shows how this works in practice.

1

1 2

1

1

1

In sliding windows advance by 1 millisecond, but
it only evaluates the window when the contents
change - so there's overlap but no redundancy.

Contents didn't
change, so the
window isn't
evaluated.

1

1 2

1

1

1

Hopping windows with an advance of 1 millisecond
would evaluate each window regardless of
the contents, leading to  redundancy.

Contents didn't
change, but
the window
is still
evaluated.

Figure 9.18 Sliding windows only evaluate when the contents of the window change, but a hopping window 
always evaluates the contents.
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So, the event timestamps of records in tumbling or hopping windows don’t determine
the window’s start or end but which one they belong to.

 Now, let’s take a look at sliding and session windows along with figure 9.21 to help
us walk through the concept.

Time
(Seconds)

Epoch start
Jan 1, 1970

0 - 60 endtime exclusive

60 - 120

. . . . . . . . . . . .. . . . . . . . . . .

1693159180887 - 1693159240887

Present day

Time windows are aligned to the epoch meaning a 60-second window starts
at time 0 and advances every 60 seconds. Start times are inclusive, but
end times are exclusive.

Figure 9.19 TimeWindows are aligned to the epoch.

Time
(Seconds)

60-second windows

6 7

Window start and end times
are already determined
because they are
aligned to epoch time.

The record timestamps
indicate which window
they belong to.

7 timestamp - 1693160339174August 27, 2:20 - 2:21 PM

Figure 9.20 With TimeWindows, the epoch time dictates the window.
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As you can see, event timestamps drive session and sliding windows. Even though
SlidingWindows has a fixed size, the window start aligns with the event timestamps.
The same is true of SessionWindows. The first record’s timestamp sets the window
start time. The end time of a sliding window is the specified max time difference plus
the timestamp of the record creating the window. For a session window, the end time
is the timestamp of the last record received preceding the inactivity gap. 

9.1.6 Retrieving window results for analysis

Let’s now take a moment to cover how to measure windowed aggregations. I men-
tioned this before in this chapter, but it’s worth repeating. When you specify a win-
dowed aggregation, Kafka Streams wraps the key with a Windowed instance that
contains the key and a Window object, which includes the start and end time of the
window. Let’s review figure 9.22, which demonstrates a windowed key. 

 Since within the Windowed key, you have access to the start and end times of the
window, in conjunction with the aggregation value, you have everything you need to
analyze your aggregation within a given timeframe. Now, I’ll show you some basic
steps you can take to review the windowed results. Let’s use the TumblingWindow exam-
ple. First, we’ll look over the aggregation code in listing 9.11, which only shows the
aggregation itself (some details are omitted for clarity). 

 
 

Time

The first record's timestamp
sets the window start.

Session window

The timestamp of the last record
before the inactivity gap
sets the window closing time.

A B C Sliding window

Record arriving creates a window,
and the end of the window
is its timestamp.

The window start
is timestamp - max difference.

Figure 9.21 Event timestamps determine the start and end of sliding and session windows.
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iotHeatSensorStream.groupByKey()
    .windowedBy(TimeWindows.ofSizeWithNoGrace(Duration.ofMinutes(1))
    .aggregate(() -> new IotSensorAggregation(tempThreshold),
        aggregator,
        Materialized.with(stringSerde, aggregationSerde))

Remember, aggregation operations return a KTable. This makes sense as you’ll want a
newer aggregation result to replace the previous one for a given key (for a review, see
chapter 8). The KTable API doesn’t offer any way for you to view its contents, so the
first step is to convert to a KSTream using the toStream() method (some details are
omitted for clarity). 

iotHeatSensorStream.groupByKey()
    .windowedBy(TimeWindows.ofSizeWithNoGrace(Duration.ofMinutes(1))
    .aggregate(() -> new IotSensorAggregation(tempThreshold),
        aggregator,
        Materialized.with(stringSerde, aggregationSerde))
        .toStream()     

Now that you have a KStream object, you can use its API to access the results in several
ways. Your next step is to add the peek method providing a lambda for the ForEach-
Action interface that the method expects as a parameter. 

iotHeatSensorStream.groupByKey()
        .windowedBy(TimeWindows.ofSizeWithNoGrace(Duration.ofMinutes(1))
        . aggregate(() -> new IotSensorAggregation(tempThreshold),

Listing 9.11 TumblingWindow aggregation

Listing 9.12 Converting the aggregation KTable to a KStream

Listing 9.13 Using peek to set up printing the start and end time of the window

Windowed

{
window : { start: 100 , end: 160},

key : 'X',

Value: 1000

}

Windowed key object

Window of the aggregation
with start and end times

The underlying key for the
aggregate

The aggregation value

Figure 9.22 Windowed aggregations wrap the key in a Windowed class 
that contains the key and the Window of the aggregation.

Converts the aggregation 
result KTable to a KStream
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                     aggregator,
                     Materialized.with(stringSerde, aggregationSerde))
        .toStream()
        .peek((windowedKey, aggregation) -> {    

At this point, you’ve only declared the key-value pair provided as the parameters for
the peek processor, but I’d like to point out the value in giving clear names for the key
and value. Here, you’ve named the key windowedKey as that accurately describes the
key object as an instance of the Windowed class; we covered this earlier in the chapter.
The value is appropriately named aggregation because that’s an accurate description.
While the naming here is a minor point, it’s helpful for others (or yourself after step-
ping away from the code!) to quickly understand what the key and value represent. 

 Next, get the Window object from the key and extract its starting and ending times.
To do this, you will add code to pull the Window object first. Then you’ll get the start-
ing and ending times of the window, as shown in the following code listing (some
details are omitted for clarity). 

iotHeatSensorStream.groupByKey()
        .windowedBy(TimeWindows.ofSizeWithNoGrace(Duration.ofMinutes(1))
        . aggregate(() -> new IotSensorAggregation(tempThreshold),
                     aggregator,
                     Materialized.with(stringSerde, aggregationSerde))
        .toStream()
        .peek((windowedKey, aggregation) -> {
                Window window = windowedKey.window();   
                Instant start =
                          window.startTime()   
                                .truncatedTo(ChronoUnit.SECONDS);
                Instant end =
                          window.endTime()         
                                .truncatedTo(ChronoUnit.SECONDS);
                  })
                })

You’ve added the retrieval of the Window from the key, and you get the starting time
with the Window.startTime() method, which returns a java.time.Instant object.
We’ve also cleaned up the time by truncating the milliseconds from the time with the
Instant.truncatedTo method. Finally, let’s complete the code by logging the window
start and end with the aggregation value. 

iotHeatSensorStream.groupByKey()
        .windowedBy(TimeWindows.ofSizeWithNoGrace(Duration.ofMinutes(1))
        . aggregate(() -> new IotSensorAggregation(tempThreshold),
                     aggregator,
                     Materialized.with(stringSerde, aggregationSerde))
        .toStream()

Listing 9.14 Printing windowed aggregation results for analytic purposes

Listing 9.15 Adding the log statement

Declares the peek 
method on the KStream

Extracts the Window 
object from the keyWindow starts

as Instant.

Window ends
as Instant.
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        .peek((windowedKey, aggregation) -> {
                Window window = windowedKey.window();
                Instant start =
                          window.startTime()
                                .truncatedTo(ChronoUnit.SECONDS);
                Instant end =
                          window.endTime()
                                .truncatedTo(ChronoUnit.SECONDS);
                LOG.info("Window started {} ended {} with value {}",   
                        start,
                        end,
                        aggregation);
                  })
                })

This final step adds the logging to display a view of the window start and end times,
along with the aggregation value for that window. This simple example with KStream
.peek prints the start and end of the window in a human-friendly format along with
the aggregation. However, this is a good starting point for using your imagination to
build your analytic feature. 

 One consequence of leaving an aggregation key in its original format is that
you’ll have to share the Serde with any application looking to consume the aggrega-
tion data. Additionally, having the window start and ending times in the key will
alter the partition assigned to the record. This means records with the same key will
end up on different partitions due to the different window times in the Windowed
key. It’s a good idea to partition the outgoing records by the underlying key. One
approach is to implement a StreamPartitioner that will determine the partition for
the aggregate result by the underlying key. The following code listing shows this pro-
cess in action. 

@Override
public Optional<Set<Integer>> partitions(String topic,
                                         Windowed<K> windowedKey,
                                         V value,
                                         int numPartitions) {
        if(windowedKey == null) {
            return Optional.empty();
        }
        byte[] keyBytes = keySerializer.serialize(topic,
                                                  windowedKey.key());
        if (keyBytes == null) {
            return Optional.empty();
        }
        Integer partition =
        ➥ Utils.toPositive(Utils.murmur2(keyBytes)) % numPartitions;

        return Optional.of(Collections.singleton(partition));
    }

Listing 9.16 Determining correct partition by the underlying key

Adds a log statement for
displaying the window open

and close along with the value
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I’ve left out some details in this listing but full example of this StreamPartitioner
implementation can be found in the book source code at bbejeck.chapter_9.bbejeck
.chapter_9.partitioner.WindowedStreamsPartitioner.java. To use the custom parti-
tioner you’d add it to the Produced configuration object like in the following listing. 

WindowedStreamsPartitioner<String, IotSensorAggregation>
➥ windowedStreamsPartitioner =
➥ new WindowedStreamsPartitioner<>(stringSerde.serializer());

....

 .to(outputTopic, Produced.with(
                      windowedSerdes, aggregationSerde)
  ➥ .withStreamPartitioner(windowedStreamsPartitioner));

Again I’m skipping some details in this listing. The full Kafka Streams example can be
found in bbejeck.chapter_9.tumbling.IotStreamingAggregationStreamPartitioner
TumblingWindows.java demonstrating using a StreamPartitioner to partition win-
dowed aggregations by the original key.

 However, the custom partitioner approach still leaves the window information in
the key and the aggregation in the value. This is a “leaky abstraction” because consum-
ing applications must know the key is a Windowed type. You can map the window time
into the aggregation value, and then you’ll have all the information in one object. To
perform the mapping you’ll first update the IotSensorAggregation object to have
two new fields of type long, maybe named windowStart and windowEnd. Then you’ll
provide an implementation of a KeyValueMapper, which will pull the window time
information from the key add, it to value, and return a KeyValue object with the origi-
nal key and the updated aggregation value. 

public class WindowTimeToAggregateMapper implements
➥ KeyValueMapper<Windowed<String>,IotSensorAggregation,
➥ KeyValue<String, IotSensorAggregation>> {
 @Override
 public KeyValue<String, IotSensorAggregation>
➥ apply(Windowed<String> windowed,
          IotSensorAggregation iotSensorAggregation) {

        long start = windowed.window().start();        
        long end = windowed.window().end();            
        iotSensorAggregation.setWindowStart(start);        
        iotSensorAggregation.setWindowEnd(end);               
        return KeyValue.pair(windowed.key(), iotSensorAggregation);
    }
}

Listing 9.17 Adding custom StreamPartitioner to Produced

Listing 9.18 Mapping the window time into the aggregation value

Extracts the 
window start time

Extracts the 
window end time

Sets the start time 
on the aggregation

Sets the window end
time on the aggregation
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With the KeyValueMapper implemementation completed, you’ll add it to the topology
with a KStream.map operator, as in the following listing (some detail are omitted for
clarity). 

KeyValueMapper<Windowed<String>, IotSensorAggregation,
➥ KeyValue<String, IotSensorAggregation>> windowTimeMapper =
                        ➥ new WindowTimeToAggregateMapper();

iotHeatSensorStream.groupByKey()
        .windowedBy(TimeWindows.ofSizeWithNoGrace(Duration.ofMinutes(1))
        . aggregate(() -> new IotSensorAggregation(tempThreshold),
                     aggregator,
                     Materialized.with(stringSerde, aggregationSerde))
        .toStream()
        .map(windowTimeMapper)           
        .to(outputTopic, Produced.with(
                        stringSerde, aggregationSerde));

Now your outgoing aggregation records will have the window time embedded in the
aggregation and plain key.

 Before we move on, let’s take a look at table 9.1, which highlights what you’ve
learned about the different window types.

Now, let’s move on to areas related to all window types, handling out-of-order data and
emitting only a single result at the end of the window. 

9.2 Handling out order data with grace—literally
You learned in chapter 4 that the KafkaProducer will set the timestamp on a record
when producing it to the broker. In a perfect world, the timestamps on the records in
Kafka Streams should always increase. The reality of distributed systems is that any-
thing can and will happen. Kafka producers communicate with brokers over a net-
work connection, which makes them susceptible to network partitions disrupting the
produce requests sent to the broker. Consider the situation in figure 9.23. 

Listing 9.19 Adding the mapper

Table 9.1

Name Window Alignment Fixed Size Use Case

Hopping epoch Yes Measures changes every x over last y

Tumbling epoch Yes Measures events per time period

Sliding Event timestamps Yes Captures changes over the continuous sliding win-
dow/rolling averages

Session Event timestamps No Behavior events occurring within_ x_ of each other

Mapping the window times into the aggregation object 
and replacing the Windowed key with the original one.



2839.2 Handling out order data with grace—literally
In this picture, producer A batches up a record to send to the broker, slightly ahead of
producer B on another host, but right when producer A attempts to send the batch,
there’s a network partition for producer A, and it can’t send its produce request. Since
producer B is on another host, it has no connectivity problems, and its produce
request proceeds.

 The network disconnects for producer A and lasts about 10 seconds (which is no
problem as the producer will keep trying to send up to the delivery.timeout expira-
tion, which is 2 minutes by default). Still, eventually, the produce request goes
through. But now the timestamps are out of order.

 The producers set the event timestamp when it accepts a ProducerRecord from the
Producer.send method, so any significant delay in completing the batch to the bro-
ker could result in timestamps being out of order. Because Kafka handles records in
offset order, the potential for having later-arriving records with earlier timestamps is
a reality. 

 In other cases, you may use a timestamp embedded in the record value payload. In
that scenario, you can’t guarantee that those timestamps are always in order since the
producer is not in control of them. Of course, the network partition situation described
in the previous paragraph also applies here.

 Let’s take a look at figure 9.24, which graphically demonstrates the concept of
what out-of-order data is.

 An out-of-order record is simply one where its timestamp is less (earlier) than the
preceding one. Returning to a windowed aggregation, you can see how this out-of-
order data can come into play. Figure 9.25 shows out-of-order data and how it relates
to windows.

Producer A

Producer 2

[5, 4, 3, 2, 1]

Producer A record batch timestamps

[9, 8, 7, 6]

Producer B record
batch timestamps

Producer 1 attempts to send
to the broker, but there's
temporary network issue.

Producer B
sends its
batch, but it
has later
timestamps.

1
2

3

Producer A retries,
and it's successful
but timestamps are
now out of order.

Figure 9.23 Network partition causing out-of-order records between two producers
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Being out of order means Kafka Streams excludes records that should have been in
the window but aren’t because the window closed.

 Well, fear not because Kafka Streams has a mechanism to account for out-of-order
data called Grace. Earlier in this chapter, you saw methods named TimeWindows
.ofSizeWithNoGrace or TimeWindows.ofSizeAndGrace, and this is exactly how you
apply (or not) Grace to windowing. Grace is the amount of time after a window closes
that you’re willing to allow an out-of-order record into the aggregation. Figure 9.26
demonstrates the concept.

 From looking at the illustration, Grace allows records into an aggregation that
Kafka Streams would have included were they on time and allows for a more accurate
calculation. Once the grace period has expired, any out-of-order records are consid-
ered late and dropped. For the cases where you want to exclude any out-of-order data,
you would use the WithNoGrace variants of any window constructor.

 There are no actual guidelines on whether you should allow a grace period for
your windows or how long to set it; you’ll need to consider that on a case-by-case basis.
But remember that Grace is a way to ensure you get the most accurate calculations by
including records that arrive out of order.

17:23:05 17:23:07 17:22:57 17:23:11

Timestamps

This record is out of order
since its timestamp is less than
the previous one.

Figure 9.24 Out-of-order records didn’t arrive in the correct sequence.

Time
(Seconds)

Tumbling window of 1 minute

15:30 15:31

A new record arrives
out of order

@ 15:31:20, which is outside
the window closing, but had it
arrived in order, it would have
been included in the window.

TS - 15:30:48

Figure 9.25 Out-of-order data could 
miss a window it would have made 
had its arrival been in order.
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You now have windowing of your aggregations, and you feel terrific about the insights
and information your application provides. But you’ve discovered that it would be eas-
ier to analyze user behavior on the flux capacitor site and achieve more reliable results
when you get the results for a single closed session, a final result.

 If you remember from chapter 7 on KStream aggregations, Kafka Streams caches
the results and emits updates when committing (every 30 seconds) or when it flushes
the cache. This behavior applies to windowed aggregations as well. But given that win-
dows have a defined start and end, you may want a single, final result when the window
closes, and we’ll cover that in the next section. 

9.3 Final windowed results
As you’ve learned before (but it’s worth reviewing again), Kafka Streams doesn’t auto-
matically forward each update for stateful operations like aggregations. Instead, Kafka
Streams caches the results. Only when Kafka Streams commits or the cache is full will
it forward the latest calculation from the stateful operation and persist the records to
the state store. Let’s review this process in figure 9.27. 

 Aggregation results will continue to build up in the cache, and at some point, the
results are forwarded downstream to the other processors. At this point, Kafka Streams
also persists the records to the state store and changelog topic.

 This workflow is true for all stateful operations, including windowed ones. As a
result, you’ll observe intermediate results from a windowed operation, as shown in fig-
ure 9.28.

 Even though your window has some time left before it’s considered closed, it will
emit an updated result when a new record arrives. But sometimes, receiving a final

Fifteen-second grace
for window N

One-minute window N
start 12:40:00

A

Time

B C

12:40:25 12:40:44 12:40:52

A'

12:40:33

Window N end
12:40:59

A, B, C, and A' are all included
in the Window.

B'

12:40:41

B' arrives outside of the
window AND the grace period
so Kafka Streams drops it.

Figure 9.26 Grace is the amount of time you’ll allow out-of-order records into a window after its 
configured close time.
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result when the window closes for a windowed operation is desirable. Figure 9.29 is a
visual of what it means for a final windowed result.

 This illustration depicts a final result, which is just as it sounds: it emits no updates
until the window is closed. I mentioned stream time in the figure, and we still need to
cover it. For now, it’s enough to know that’s how Kafka Streams keeps time internally;
we’ll get to stream time in section 9.6.

NOTE Final results are only available for windowed operations. With an event
streaming application like Kafka Streams, the number of incoming records is
infinite, so there’s never a point where we can consider something final. How-
ever, since a windowed aggregation represents a discrete period, the available
record when the window closes can be viewed as a final result for that time
interval.

Stateful processor

Cache

State store

Changelog topic

Downstream processor

By default, Kafka Streams
caches stateful results.
When committing or the cache
is full, stateful results are

1) Sent downstream,
2) persisted
in the statestore, and
3) sent to the changelog topic

1

2

3

Figure 9.27 Kafka Streams caches stateful results and forwards them when committing or on 
a cache flush.

Time

Windowed count

Newly arriving record

Even though the window still has
over 1/2 its time before closing, it
will emit a new count each time a
new record arrives (and it's not late).

(5)

Updated count

Figure 9.28 Windowed operations will emit intermediate results even when the 
window is still open.
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You have two choices in Kafka Streams to obtain a single result for windowed aggrega-
tions. One is to use the relatively recently introduced EmitStrategy or the KTable
.suppress operation. The EmitStrategy approach is easier to understand, so I’ll
cover that first. 

 You’ve seen from our windowing examples when you want to add a window to an
aggregation, you add a windowedBy(..) operation immediately after the KStream
.groupByKey() method. It looks like the following code listing. 

iotHeatSensorStream.groupByKey()
                .windowedBy(TimeWindows.ofSizeWithNoGrace(
                                          Duration.ofMinutes(1)))

This tiny bit of code is from the previous tumbling window example in listing 9.6. If
you didn’t want any intermediate results, you would set the EmitStrategy for that win-
dow to only emit on closing, as shown in the following listing (some details are omit-
ted for clarity).

iotHeatSensorStream.groupByKey()
                .windowedBy(TimeWindows.ofSizeWithNoGrace(
                                          Duration.ofMinutes(1)))
                .emitStrategy(EmitStrategy.onWindowClose())    
                .aggregate(...)

With that one line of code (.emitStrategy(EmitStrategy.onWindowClose())), you’ve
set your tumbling window aggregation to only emit a result when the window closes.

Listing 9.20 Adding windowing after the groupByKey call

Listing 9.21 Setting the emit strategy to when the window closes

Time

Windowed count

Newly arriving record but no updates sent

When stream time moves forward and the window closes,
a single final count gets emitted from the window.

Count(11)

Figure 9.29 Only a single result is emitted when a window closes.

Sets the emit
strategy to

window closing
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There’s also an EmitStrategy.onWindowUpdate(), but you don’t have to set it; it is the
default behavior if the developer doesn’t explicitly set an emit policy. 

 Let’s move on to another form of final windowed results: suppression. Enabling
the KTable.suppress operation is also simple as it entails adding one line of code. 

.suppress(Suppressed.untilWindowCloses(
                  StrictBufferConfig.unbounded()))   

I’m skipping over several details about suppress, and I’ll get into those next, but for
now, let’s look at how you’ll apply it to your pageview session windowed application in
the following listing (some details are omitted for clarity).

KStream pageViewStream = builder.stream("page-view",
                                Consumed.with(serdeString,pageViewSerde))
pageViewStream.groupByKey()
              .windowedBy(SessionWindow
                         .ofInactivityGapWithNoGrace(
                                            Duration.ofMinutes(2)))   
              .aggregate(HashMap::new,
                        sessionAggregator,
                        sessionMerger)
              .suppress(Suppressed.untilWindowCloses(unbounded()))  
              .toStream()
              .to("page-view-session-aggregates",
                  Produced.with(windowedSerdes, pageViewAggregationSerde))

You’ll notice that the suppress operator accepts a parameter; the configuration class
Suppressed and Suppressed itself receive a parameter named BufferConfig. Now
you know why and how you can suppress intermediate windowed results. But I’ve
thrown some new material at you, so let’s get into the details of suppression’s opera-
tion and configuration. 

 Suppression in Kafka Streams works by buffering the intermediate results, per key,
until the window closes and there’s a final result. This buffering occurs in-memory, so
right away, you can see some tension between the two tradeoffs. You could eat up all
the free memory if you fully retain records for all keys until a window closes. On the
other hand, you could release some results before the window closes to free up mem-
ory at the cost of nonfinal results.

 With these two scenarios in mind, there are two main options to consider about
using suppression in Kafka Streams: strict or eager buffering. Let’s discuss each option,
starting with the strict option. Figure 9.30 helps you understand how it works.

 With strict buffering, results are buffered by time, and the buffering is strictly
enforced by never emitting a result early until the time bound is met. Now, let’s go
over what eager buffering is, along with a pictorial description in figure 9.31.

Listing 9.22 The suppression operator

Listing 9.23 Adding suppression to the pageview session aggregation

Applies the 
suppress operator

Uses a session window
on the aggregation

Adds suppression
to achieve a final

result of the
session window
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With the eager buffering approach, results are buffered by size (number of bytes) or
by number of records. When these conditions are met, the window operator will emit
results downstream. This will reduce the number of downstream records but doesn’t
guarantee a final one.

 The strict approach guarantees a final result and no duplicates. Eager buffering
could also produce a final result, with the likelihood of emitting a few intermediate
results. You can think of the tradeoff this way: with strict buffering, the buffer isn’t
bounded, so the possibility of getting an OutOfMemory (OOM) exists. Still, with eager
buffering, you’ll never hit an OOM exception, but you could end up with multiple
results. While the possibility of incurring an OOM may sound extreme, if you feel the

Time

Windowed count

Newly arriving record

(5)

Updated count

A strict buffer will not
emit a result until the
window closes - this is true
even if the buffer becomes
full.

The last update
fills the buffer but still
nothing emitted.

Results get buffered.

Figure 9.30 Strict buffering retains all results and never emits one before a window closes.

Time

Windowed count

Newly arriving record

(5)

Updated count

An eager buffer will
emit a result if its
buffer conditions are
met.

Results get buffered.

The last update fills the
buffer, so it will emit a
result even though the
window has not closed.

(5)

Figure 9.31 Eager buffering retains results up to the configured number of records or bytes and 
will emit results before the window closes.
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buffer won’t get that large or you have a sufficiently large heap available, then using
the strict configuration should be OK. 

NOTE The possibility of an OOM is milder than it seems at first glance. All
Java applications that use data structures in-memory—List, Set, or Map—have
the potential to cause an OOM if you continually add to them. To use them
effectively requires a balance of knowledge between the incoming data and
the amount of heap you have available.

Regarding which option you should choose and why, it depends on your require-
ments. So, I can’t offer any recommendations, but I can walk you through some con-
figuration scenarios that should provide you with enough information to apply to
your applications. We’ll start with the strict buffering options.

9.3.1 Strict buffering

Suppression windowed results with an unbounded buffer are something you’ve seen
before. It’s the suppression setting you used for our example in section 9.1.3 on ses-
sion windows, and it’s worth reviewing it again here. For clarity, I will not show the
entire aggregation code, just the suppression part (also using static imports); there
will be examples in the source code showing the complete aggregation with the differ-
ent suppression configurations. 

.suppress(untilWindowCloses(unbounded()))      

With this setup, you’re placing no restrictions on the buffering. The aggregation will
continue to suppress results until the window closes, guaranteeing that you’ll only
receive a windowed aggregate when it’s final.

 Next is a strict buffering option with some configurable over the buffer size. With
this option, you’ll stipulate how much you’re willing to buffer, and should it exceed
your established limits, your application will go through a controlled shutdown.

 You can configure the maximum number of records or bytes to store for the buffer
constraints. The following listing shows the code for a max buffer size.

.suppress(untilWindowCloses(maxRecords(10_000))      
                           .shutDownWhenFull())  

Here, you’re specifying the maximum number of records is 10,000, and should the
buffering exceed that number, the application will shut down gracefully. A Buffer-
Config.maxBytes option works similarly, except you specify total bytes instead of a
record count. 

Listing 9.24 Suppressing all updates until the window closes with an unbounded buffer

Listing 9.25 Setting up suppression for the final result, controlling the potential shutdown

Suppresses all results until the window 
closes with an unbounded buffer

Sets max records 
to 10,000

Specifies to shut down if the limit is reached
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 But shutting down, even a controlled one, is a tough choice. We’ll move to eager
buffering next for those who favor having a possible early result (meaning there could
be duplicates) versus shutting down. 

9.3.2 Eager buffering

With eager buffering, the tradeoff is on the other side of the coin. You’ll never experi-
ence an application shutdown, but your aggregation could emit a nonfinal result. This
example has a couple of different concepts, so let’s review figure 9.32 first to help
understand how eager buffering works. 

What’s different here is you specify how long to wait for a new record before emitting
a result. If a new record does arrive, it will replace the existing one, but it does not
reset the timer. You also specify a maximum size for the buffer, so should it fill up
before the time has expired, the suppression operator forwards a record. Now, let’s
look at the code you’ll use.

.suppress(untilTimeLimit(Duration.ofMinutes(1),   
                           maxRecords(1000)               
                          .emitEarlyWhenFull()))   

Listing 9.26 Using suppression with eager buffering

Time

Windowed count

X {timestamp: 123567}

Updated count results get buffered.

As new records arrive
the aggregation gets
updated and end up
in the suppression buffer

Max records - 1,000

When the number of records in
the buffer reach the max count,
it will emit.

Time limit - 1 minute

If the timestamp
of the records
surpass the
time limit set, then
a record is emitted.

Buffer

1) Check timestamp difference.
2) Check buffer size count.

Figure 9.32 With eager buffering, you specify how long to wait for a new record to arrive before 
emitting a result.

Sets a time limit of 1 hour before
sending the result downstream Specifies to buffer a 

maximum of 1,000 
records

Takes the action of emitting a record when the
maximum number of buffered records is reached
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What’s interesting about using eager buffering is that you can set the time limit to
match the window size (plus any grace period), so depending on the volume of
records, you may get a final result when the window closes. But since you’re using an
eager buffering strategy, should the number of records exceed the buffer size, the
processor will forward a record regardless of whether the time limit is reached. Again,
if you want the time limit to correspond to the window closing, you need to include
the grace period, if any, in the time limit.

 This wraps up our discussion on the suppression of aggregations in Kafka Streams.
Even though the examples in the suppression section only demonstrated using the
KStream and windowed aggregations, you could apply the same principle to nonwin-
dowed KTable aggregations by using the time limit API of suppression.

 Now, let’s move on to the last section of this chapter, timestamps in Kafka Streams. 

9.4 Timestamps in Kafka Streams
Earlier, in chapter 4, we discussed timestamps in Kafka records. In this section, we’ll
discuss the use of timestamps in Kafka Streams. Timestamps play a role in key areas of
Kafka Streams functionality:

 Joining streams
 Updating a changelog (KTable API)
 Deciding when the Processor.punctuate() method is triggered (Processor API) 
 Window behavior

With stream processing in general, you can group timestamps into three categories:

 Event time—A timestamp set when the event occurred, usually embedded in the
object used to represent the event. We’ll consider the timestamp set when the
ProducerRecord is also created as the event time.

 Ingestion time—A timestamp set when the data enters the data processing pipe-
line. You can consider the timestamp established by the Kafka broker (assum-
ing a configuration setting of LogAppendTime) to be ingestion time.

 Processing time—A timestamp set when the data or event record starts flowing
through a processing pipeline.

Figure 9.33 illustrates these categories.
 You’ll see in this section how the Kafka Streams, by using a TimestampExtractor,

allows you to choose which timestamp semantics you want to support. 

NOTE So far, we’ve had an implicit assumption that clients and brokers are in
the same time zone, but that might only sometimes be true. When using time-
stamps, it’s safest to normalize the times using the UTC time zone, eliminat-
ing confusion over which time zones brokers and clients use.



2939.4 Timestamps in Kafka Streams
In most cases using event-time semantics, the timestamp placed in the metadata by the
ProducerRecord is sufficient. But there may be cases when you have different needs.
Consider these examples:

 You’re sending messages to Kafka with events that have timestamps recorded in
the message objects. There’s some lag time when these event objects are made
available to the Kafka producer, so you want to consider only the embedded
timestamp.

 You want to consider the system time when your Kafka Streams application pro-
cesses records instead of using the records’ timestamps. 

Timestamp embedded in data object at time of event or
timestamp set in ProducerRecord by a Kafka producer.

Timestamp set at time record is appended to log (topic).

Timestamp generated at the moment when record
is consumed, ignoring timestamp embedded in data
object and ConsumerRecord

Event time

Ingest time

Processing time

Or

Value

Record

Timestamp

Record

Value Timestamp

Value

Record

Timestamp

Timestamp generated
when record is consumed
(wall-clock time).

Timestamp

Kafka producer

Kafka broker

Kafka Streams

Some event
timestamp

Figure 9.33 There are three categories of timestamps in Kafka Streams: event time, 
ingestion time, and processing time.
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9.5 The TimestampExtractor
Kafka Stream provides a TimestampExtractor interface with one abstract and four
concrete implementations to enable different processing semantics. If you need to
work with timestamps embedded in the record values, create a custom Timestamp-
Extractor implementation. Let’s briefly look at the included extractors and imple-
ment a custom one. 

 Almost all of the provided TimestampExtractor implementations work with time-
stamps set by the producer or broker in the message metadata, thus providing either
event-time processing semantics (timestamp set by the producer) or log append–time
processing semantics (timestamp set by the broker). Figure 9.34 demonstrates pulling
the timestamp from the ConsumerRecord object. 

Although you’re assuming the default configuration setting of CreateTime for the
timestamp, remember that if you used LogAppendTime, the timestamp value for
when the Kafka broker appended the record to the log would be returned. Extract-
RecordMetadataTimestamp is an abstract class that provides the core functionality for
extracting the metadata timestamp from the ConsumerRecord. Most of the concrete
implementations extend this class. Implementors override the abstract method,
ExtractRecordMetadataTimestamp.onInvalidTimestamp, to handle invalid timestamps
(when the timestamp is less than 0). 

 Here’s a list of classes that extend the ExtractRecordMetadataTimestamp class:

 FailOnInvalidTimestamp—Throws an exception for an invalid timestamp.
 LogAndSkipOnInvalidTimestamp—Returns the invalid timestamp and logs a

warning message that Kafka Streams will discard the record due to the invalid
timestamp.

 UsePartitionTimeOnInvalidTimestamp—In the case of an invalid timestamp,
the new timestamp comes from the current stream-time.

Timestamp

Consumer timestamp extractor
retrieves timestamp set by the
Kafka producer or broker.

Dotted rectangle represents
ConsumerRecord metadata.

Key Value

Entire enclosing rectangle represents
a object.ConsumerRecord

Figure 9.34 Timestamps in the ConsumerRecord object: the producer or 
broker sets this timestamp, depending on your configuration.
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We’ve covered the event-time timestamp extractors, but there’s one more provided
timestamp extractor to cover.

9.5.1 WallclockTimestampExtractorSystem .currentTimeMillis() 
method

WallclockTimestampExtractor provides process-time semantics and doesn’t extract
any timestamps. Instead, it returns the time in milliseconds by calling the System
.currentTimeMillis() method. You’d use the WallclockTimestampExtractor when
you need processing-time semantics.

 That’s it for the provided timestamp extractors. Next, we’ll look at how you can
create a custom version. 

9.5.2 Custom TimestampExtractor

To work with timestamps (or calculate one) in the value object from the Consumer-
Record, you’ll need a custom extractor that implements the TimestampExtractor
interface. For example, let’s say you are working with IoT sensors, and part of the
information is the exact time of the sensor reading. Your calculations need a precise
timestamp, so you’ll want to use the one embedded in the record sent to Kafka, not
the one the producer set. 

 Figure 9.35 depicts using the timestamp embedded in the value object versus one
set by Kafka (either producer or broker).

The following code listing is an example of a TimestampExtractor implementation
(found in src/main/java/bbejeck/chapter_9/timestamp_extractor/Transaction-
TimestampExtractor.java). 

Timestamp

ConsumerRecord metadata

Custom knows whereTimestampExtractor
to pull the timestamp from the value in a
ConsumerRecord object

Key Value

Entire enclosing
rectangle represents a
ConsumerRecord object.

Record in JSON format

{ “recordType” = “purchase”,
“amount” = 500.00,
“timestamp” = 1502041889179 }

Figure 9.35 A custom TimestampExtractor provides a timestamp based on the value 
contained in the ConsumerRecord. This timestamp could be an existing value or one 
calculated from properties in the value object.
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public class TransactionTimestampExtractor implements TimestampExtractor {

    @Override
    public long extract(ConsumerRecord<Object, Object>
                        consumerRecord,
                        long partitionTime) {
        PurchaseTransaction purchaseTransaction =
                          (PurchaseTransaction) consumerRecord.value();   
        return purchaseTransaction.transactionTime();    
    }
}

In the join example, you used a custom TimestampExtractor to obtain the time-
stamps of the actual purchase time. This approach allows you to join the records even
if delivery delays or out-of-order arrivals occur. 

9.5.3 Specifying a TimestampExtractor

Now that we’ve discussed how timestamp extractors work, let’s tell the application
which one to use. You have two choices for specifying timestamp extractors. 

 The first option is to set a global timestamp extractor specified in the properties
when setting up your Kafka Streams application. If no property is set, the default setting
is FailOnInvalidTimestamp.class. For example, the following code would configure
the TransactionTimestampExtractor via properties when setting up the application:

props.put(StreamsConfig.DEFAULT_TIMESTAMP_EXTRACTOR_CLASS_CONFIG,
         TransactionTimestampExtractor.class);

The second option is to provide a TimestampExtractor instance via a Consumed object:

Consumed.with(Serdes.String(), purchaseSerde)
         .withTimestampExtractor(new TransactionTimestampExtractor()))

The advantage of doing the latter is having one TimestampExtractor per input source,
whereas the other option provides a TimestampExtractor instance used application-
wide. 

9.6 Stream time
Before we end this chapter, we should discuss how Kafka Streams keeps track of time
while processing—that is, by using stream time. Stream time is not another category
of timestamp; it is the current time in a Kafka Streams processor. As Kafka Streams
selects the next record to process by timestamp, the values will increase as processing
continues. Stream time is the largest timestamp seen by a processor and represents
the current time for it. Since a Kafka Streams application breaks down into tasks and a
task is responsible for records from a given partition, the value of stream time is not
global in a Kafka Streams application; it’s unique at the task (hence, partition) level. 

Listing 9.27 Custom TimestampExtractor

Retrieves the
PurchaseTransaction
object from the key-

value pair sent to Kafka

Returns the timestamp recorded at the point of sale
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 Stream time only moves forward, never backward. Out-of-order records are always
processed, except for windowed operations depending on the grace period, but its
timestamp does not affect stream time. Figure 9.36 shows how stream time works in a
Kafka Streams application.

As the illustration shows, the current time of the application moves forward as records
go through the topology, and out-of-order records still go through the application but
do not change stream time.

 Stream time is vital for the correctness of windowed operations, as a window only
advances and closes as stream time moves forward. If the source topics for your appli-
cation are bursty or have a sporadic sustained volume of records, you might encoun-
ter a situation where you don’t observe windowed results. Let’s look at figure 9.37, a
pictorial representation, to help understand what’s going on.

12:41:05 12:40:53 12:41:1312:40:51

stream time == 12:40:51 stream time == 12:41:05 stream time == 12:41:05 stream time == 12:41:13

An out-of-order
record does not
advance stream time.

With each incoming record with an increasing time,
stream time is set to that timestamp

Figure 9.36 Stream time represents the highest timestamp seen so far and is the current time of 
the application.

Stream time > window close time

Until a new record arrives in the window and
advances the stream time, the window will remain
open - and it may not emit another update.

New record in window

The new record advances stream time,
and the window can close.

Figure 9.37 Stream time drives the behavior of windows, so low activity means you 
may not observe window updates.



298 CHAPTER 9 Windowing and timestamps
This apparent lack of processing is because there haven’t been enough incoming
records to move stream time forward to force window calculations.

 Timestamps’ effect on operations in Kafka Streams is essential to remember when
testing applications, as manually adjusting the value of timestamps can help you drive
valuable tests to validate behavior. We’ll talk more about using timestamps for testing
in chapter 14 on testing. Stream time also comes into play when you have punctua-
tions, which we’ll cover in the next chapter when we discuss the Processor API. 

Summary
 Windowing is a way to calculate aggregations for a given time. Like all other

operations in Kafka Streams, new incoming records mean an update is released
downstream. Still, windowed functions can use suppression to have a single
final result only when the window closes. Kafka Streams window operators also
offer emitStrategy for final results. Using the emitStrategy method is more
straightforward than using suppression.

 There are four types of windows: hopping, tumbling, sliding, and session. Hop-
ping and tumbling windows are fixed in size over time. Sliding windows are set
in size by time, but record behavior drives record inclusion in a window. Session
windows are entirely driven by record behavior, and the window can continue
to grow as long as incoming records are within the inactivity gap.

 Timestamps drive the behavior in a Kafka Streams application, which is most
apparent in windowed operations, as the timestamps of the records drive the
opening and closing of these operations. Stream time is the highest timestamp
viewed by a Kafka Streams application during processing.

 Kafka Streams provides different TimestampExtractor instances, so you can use
different timestamps in your application—semantics event time, log-append time,
or processing time. 



The Processor API
We’ve been working with the high-level Kafka Streams API until this point in the
book. A DSL allows developers to create robust applications with minimal code.
The ability to quickly assemble processing topologies is an essential feature of the
Kafka Streams DSL. It will enable you to iterate rapidly to flesh out ideas for work-
ing on your data without getting bogged down in the intricate setup details some
other frameworks may need.

 But at some point, even when working with the best tools, you’ll come up
against one of those one-off situations—a problem that requires you to deviate

This chapter covers
 Evaluating higher-level abstractions versus more 

control

 Working with sources, processors, and sinks 
to create a topology

 Digging deeper into the Processor API with 
a stock analysis processor

 Creating a co-grouping processor

 Integrating the Processor API and the Kafka 
Streams API
299
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from the traditional path. Whatever the case, you need a way to dig down and write
some code that isn’t possible with a higher-level abstraction.

 A classic example of trading off higher-level abstractions versus gaining more con-
trol is using object-relational mapping (ORM) frameworks. A good ORM framework
maps your domain objects to database tables and creates the correct SQL queries for
you at run time. When you have simple-to-moderate SQL operations (e.g., simple
SELECT or JOIN statements), using the ORM framework saves you much time. But no
matter how good the ORM framework is, there will inevitably be those few queries
(i.e., very complex joins, SELECT statements with nested sub-select statements) that
don’t work the way you want. You need to write raw SQL to get the information from
the database in the format you need. Here, you can see the tradeoff between a higher-
level abstraction and more programmatic control. Often, you’ll be able to mix the raw
SQL with the higher-level mappings provided with the framework. 

 This chapter covers the situation where you want to do stream processing in a way
that the Kafka Streams DSL doesn’t make accessible. For example, you’ve seen from
working with the KTable API that the framework controls the timing of forwarding
records downstream. You may find yourself in a situation where you want explicit con-
trol over when Kafka Streams delivers a record to downstream processors. You might
be tracking trades on Wall Street and only want to forward records when a stock
crosses a particular price threshold. Or you want to scan the entries of a state store at
regular given time intervals. To gain this type of control, you can use the Processor
API. What the Processor API lacks in ease of development, it makes up for in power.
You can write custom processors to do almost anything you want. 

 In this chapter, you’ll learn how to use the Processor API to handle situations like
the following that the Kafka Streams DSL does not address:

 Schedule actions, such as scanning the entries in a state store, to occur at regu-
lar intervals (either based on record timestamps or wall clock time).

 Gain complete control over when to forward records downstream.
 Forward records to specific child nodes.
 Create functionality that doesn’t exist in the Kafka Streams API (you’ll see an

example when we build a data-driven aggregation processor in section 10.3).

First, let’s look at how to use the Processor API by developing a topology. 

10.1 Working with sources, processors, and sinks 
to create a topology
Let’s say you own a successful brewery (Pops Hops) with several locations. You’ve
recently expanded your business to accept online orders from distributors, including
international sales to Europe. You want to route orders within the company based on
whether the order is domestic or international, converting European sales from Brit-
ish pounds or euros to US dollars. 
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 If you sketch out the flow of the business, it would look something like figure 10.1.
In building this example, you’ll see how the Processor API allows you to select specific
child nodes when forwarding records. Let’s start by creating a source node.

10.1.1 Adding a source node

The first step in constructing a topology is establishing the source nodes. The follow-
ing listing (found in src/main/java/bbejeck/chapter_10/PopsHopsApplication.java)
sets the data source for the new topology. 

Topology topology = new Topology();

topology.addSource(LATEST,          
                  purchaseSourceNodeName,           
                  new UsePartitionTimeOnInvalidTimestamp(),    
                  stringDeserializer,                   
                  beerPurchaseDeserializer,     
                  INPUT_TOPIC)    

In the Topology.addSource() method, you see a different approach from the DSL.
First, you name the source node. When you used the Kafka Streams DSL, you didn’t
need to pass in a name because the KStream instance generated a name for the node.
But when you use the Processor API, you need to provide the names of the nodes in
the topology. Kafka Streams uses the node name to connect a child node to a parent
node. Additionally, in the DSL you provide optional source node parameters via a
Consumed configuration object but here in the Processor API, you pass them in
directly via different Topology.addSource method overloads. 

Listing 10.1 Creating the beer application source node

Source node

Domestic sales topic International sales topic

Beer-purchase processor

Figure 10.1 Beer sales distribution pipeline

Specifies the offset 
reset to use

Specifies the 
name of this node

Specifies the
TimestampExtract
or to use for this

source

Sets the key 
deserializer

Sets the value 
deserializer

Specifies the name of the
topic to consume data from
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 Next, you specify the timestamp extractor to use with this source. Here, you’re
using the UsePartitionTimeOnInvalidTimestamp class, which, if the incoming time-
stamp is invalid (a negative number), will set it to be the highest value so far (stream
time) for the partition of the incoming record. But for the most part, you should
expect the timestamps to be valid. 

NOTE When creating a source node with the Processor API, there are only
two required parameters: the processor name and topic name(s) or pattern.

Next, you provide a key and value deserializer, representing another departure from
the Kafka Streams DSL. When creating source or sink nodes, you supplied Serde
instances in the DSL. The Serde contains a serializer and deserializer, and the Kafka
Streams DSL uses the appropriate one, depending on whether you’re going from
object to byte array or from byte array to object. Because the Processor API is a lower-
level abstraction, you directly provide a deserializer when creating a source node and
a serializer when creating a sink node. Finally, you give the name of the source topic.

 Let’s next look at how you’ll add processor nodes that do something with the
incoming records. 

10.1.2 Adding a processor node

Now, you’ll add a processor to work with the records coming in from the source node
in listing 10.2, found in src/main/java/bbejeck/chapter_10/PopsHopsApplication.java
(some details are omitted for clarity). Let’s first discuss how to wire up the processors,
and then we’ll cover the functionality of the added processor. 

Map<String, Double> conversionRates = Map.of("EURO", 1.1, "POUND", 1.31);

topology.addSource(LATEST,
                  purchaseSourceNodeName,
                  new UsePreviousTimeOnInvalidTimestamp(),
                  stringDeserializer,
                  beerPurchaseDeserializer,
                  INPUT_TOPIC)
       .addProcessor(purchaseProcessor,    
                     () -> new BeerPurchaseProcessor(      
                                            domesticSalesSink,    
                                            internationalSalesSink,
                                            conversionRates),
                    purchaseSourceNodeName)   

This code uses the fluent interface pattern for constructing the topology. The differ-
ence from the Kafka Streams API lies in the return type. With the Kafka Streams API,
every call on a KStream operator returns a new KStream or KTable instance. In the
Processor API, each call to Topology returns the same Topology instance. 

Listing 10.2 Adding a processor node

Names the 
processor node

ProcessorSupplier
(as a lambda)

provides the processor

Constructor args
for the Processor

The name of the parent 
node for this node
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 In the previous code, you pass in a ProcessorSupplier. The Topology.addProcessor
method takes an instance of a ProcessorSupplier interface for the second parame-
ter, but because the ProcessorSupplier is a single-method interface, you can replace
it with a lambda expression. The critical point is that the third parameter, purchase-
SourceNodeName, of the addProcessor() method is the same as the second parameter
of the addSource() method, as illustrated in figure 10.2. 

Using the name of the source node establishes the parent–child relationship between
nodes. The parent–child relationship, in turn, determines how records move from
one processor to the next in a Kafka Streams application.

 Now let’s look at what you’ve built so far, shown in figure 10.3.

Let’s take a second to discuss the BeerPurchaseProcessor functions. The processor
has two responsibilities:

builder.addSource(LATEST,
purchaseSourceNodeName,
new UsePreviousTimeOnInvalidTimestamp()
stringDeserializer,
beerPurchaseDeserializer,
"pops-hops-purchases");

builder.addProcessor(purchaseProcessor,
,() -> beerProcessor

purchaseSourceNodeName);

The name of the source node (top) is used
for the parent name of the processing node
(bottom). This establishes the parent-child
relationship, which directs data flow
in Kafka Streams.

Figure 10.2 Wiring up parent and child nodes in the Processor API

Source node

Beer-purchase processor

name = "beer-purchase-source"

name = "purchase-processor"
parent = "beer-purchase-source"

Figure 10.3 The Processor API 
topology so far, including node 
names and parent names
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w

ta
 Convert international sales amounts (in euros) to US dollars.
 Based on the origin of the sale (domestic or international), route the record to

the appropriate sink node.

All of this takes place in the process() method. To quickly summarize, the process()
method does the following:

1 Checks the currency type and, if it’s not in dollars, converts it to dollars
2 If it’s a nondomestic sale, forwards the updated record to the international-

sales topic
3 Otherwise, forwards the record directly to the domestic-sales topic

The following listing shows the code for this processor, found in src/main/java/
bbejeck/chapter_10/ processor/BeerPurchaseProcessor.java.

public class BeerPurchaseProcessor extends
   ContextualProcessor<String, BeerPurchase, String, BeerPurchase> {

    private final String domesticSalesNode;
    private final String internationalSalesNode;
    private final Map<String, Double> conversionRates;

    public BeerPurchaseProcessor(String domesticSalesNode,
                                 String internationalSalesNode,
                                 Map<String,Double> conversionRates) {

        this.domesticSalesNode = domesticSalesNode;              
        this.internationalSalesNode = internationalSalesNode;    
        this.conversionRates = conversionRates;
    }

    @Override
    public void process(
      Record<String, BeerPurchase> beerPurchaseRecord) {    

        BeerPurchase beerPurchase = beerPurchaseRecord.value();
        String key  = beerPurchaseRecord.key();
        BeerPurchase.Currency transactionCurrency =
              beerPurchase.getCurrency();

        if (transactionCurrency != BeerPurchase.Currency.DOLLAR) {
            BeerPurchase.Builder builder =
                   BeerPurchase.newBuilder(beerPurchase);
            double internationalSaleAmount = beerPurchase.getTotalSale();
            String pattern = "###.##";
            DecimalFormat decimalFormat = new DecimalFormat(pattern);
            builder.setCurrency(BeerPurchase.Currency.DOLLAR);

Listing 10.3 BeerPurchaseProcessor 

Sets the names for different
nodes to forward records to

The
process()
method,
here the

action
kes place
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            builder.setTotalSale(Double.parseDouble(decimalFormat.format(
                   convertToDollars(transactionCurrency.name(),
                   internationalSaleAmount))));                          
            Record<String, BeerPurchase> convertedBeerPurchaseRecord =
                       new Record<>(key,builder.build(),
                                    beerPurchaseRecord.timestamp());
            context().forward(convertedBeerPurchaseRecord,    
                              internationalSalesNode);
        } else {
            context().forward(
                      beerPurchaseRecord,
                      domesticSalesNode);   
        }
}

This example extends ContextualProcessor, a class with overrides for Processor
interface methods, except for the process() method. The Processor.process()
method is where you perform actions on the records flowing through the topology. 

NOTE The Processor interface provides the init(), process(), and close()
methods. The Processor is the primary driver of any application logic that
works with records in your streaming application. You’ll usually extend the
ContextualProcessor class in the examples, so you’ll only override the meth-
ods you want. The ContextualProcessor class initializes the ProcessorContext
for you, so if you don’t need to do any setup in your class, you don’t need to
override the init() method. 

The last few lines of listing 10.3 demonstrate the main point of this example—the abil-
ity to forward records to specific child nodes. In these lines, the context() method
retrieves a reference to the ProcessorContext object for this processor. All processors
in a topology receive a reference to the ProcessorContext via the init() method,
which is executed by the StreamTask when initializing the topology. 

 Now that you’ve seen how you can process records, the next step is to connect a
sink node (topic) so you can write records back to Kafka. 

10.1.3 Adding a sink node

By now, you probably have a good feel for the flow of using the Processor API. To add
a source, you use addSource; to add a processor, you use addProcessor. As you might
imagine, you’ll use the addSink() method to wire a sink node (topic) to a processor
node. Figure 10.4 shows the updated topology. 

 You can now update the topology you’re building by adding sink nodes in the
code, found in src/main/java/bbejeck/chapter_10/PopsHopsApplication.java.

 
 
 
 

Converts
international

sales to US dollars

Uses the
ProcessorContext

(returned from the
context() method)

and forwards records
to the international

sink node
Sends records for domestic

sales to the domestic sink node



306 CHAPTER 10 The Processor API
String domesticSalesSink = "domestic-beer-sales";
String internationalSalesSink = "international-beer-sales";

topology.addSource(LATEST,
                  purchaseSourceNodeName,
                  new UsePreviousTimeOnInvalidTimestamp(),
                  stringDeserializer,
                  beerPurchaseDeserializer,
                  INPUT_TOPIC)
       .addProcessor(purchaseProcessor,
                     () -> new BeerPurchaseProcessor(
                                            domesticSalesSink,
                                            internationalSalesSink,
                                            conversionRates),
                    purchaseSourceNodeName)

       .addSink(internationalSalesSink,  
                "international-sales",      
                stringSerializer,        
                beerPurchaseSerializer,    
                purchaseProcessor)       

       .addSink(domesticSalesSink,      
                "domestic-sales",       
                stringSerializer,          
                beerPurchaseSerializer,   
                purchaseProcessor);      

Listing 10.4 Adding sink nodes

Source node

Domestic sales sink International sales sink

Beer-purchase processor

name = purchaseSourceNodeName

name = domesticSalesSink
parent = purchaseProcessor

name = purchaseProcessor
parent = purchaseSourceNodeName

name = internationalSalesSink
parent = purchaseProcessor

Note that the two sink nodes
here have the same parent.

Figure 10.4 Completing the topology by adding sink nodes

Name of
the sink The topic this 

sink represents
Serializer

for the key Serializer for 
the value

Parent node
for this sink Name of the sink

The topic this
sink represents Serializer for the key

Serializer for the value Parent node for this sink
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In this listing, you add two sink nodes, one for domestic sales and another for interna-
tional sales. Depending on the currency of the transaction, you’ll write the records
out to the appropriate topic.

 The critical point to notice when adding two sink nodes here is that both have the
same parent name. By supplying the same parent name to both sink nodes, you’ve
wired them to your processor (as shown in figure 10.4).

 In this first example, you’ve seen how you build Kafka Streams applications with
the Processor API. While you walked through a specific example, the general princi-
ples of adding a source node(s), one or more processing nodes, and, finally, a sink
node(s) apply to any application you build. Although the Processor API is a little more
verbose than the Kafka Streams API, it’s still easy to construct topologies. The follow-
ing example will explore more of the flexibility the Processor API provides. 

10.2 Digging deeper into the Processor API 
with a stock analysis processor
You’ll now return to the world of finance and put on your day trading hat. As a day
trader, you want to analyze how stock prices change to pick the best time to buy and
sell. The goal is to take advantage of market fluctuations and profit quickly. We’ll con-
sider a few key indicators, hoping they’ll indicate when you should make a move. 

 The list of requirements is as follows:

 Show the current value of the stock.
 Indicate whether the price per share is trending up or down.
 Include the total share volume so far and whether the volume is trending up

or down.
 Only send records downstream for stocks displaying 2 percent trending (up

or down).
 Collect at least 20 samples for a given stock before performing any calculations.

Let’s walk through how you might handle this analysis manually. Figure 10.5 shows the
decision tree you’ll want to create to help make decisions.

 You’ll need to perform a handful of calculations for your analysis. Additionally,
you’ll use these calculation results to determine if and, if so, when you should forward
records downstream.

 This restriction on sending records means you can’t rely on the standard mecha-
nisms of commit time or cache flushes to handle the flow for you, which rules out
using the Kafka Streams API. You’ll also require a state store to keep track of changes
over time. What you need here is the ability to write a custom processor. Let’s look at
the solution to the problem.
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10.2.1 The stock-performance processor application

The following listing shows the topology for the stock-performance application, found
in src/main/java/bbejeck/chapter_9/StockPerformanceApplication.java. 

Topology topology = new Topology();
 String stocksStateStore = "stock-performance-store";
 double differentialThreshold = 0.02;           

KeyValueBytesStoreSupplier storeSupplier =
 Stores.inMemoryKeyValueStore(stocksStateStore);   
StoreBuilder<KeyValueStore<String, StockPerformance>> storeBuilder
 = Stores.keyValueStoreBuilder(
 storeSupplier, Serdes.String(), stockPerformanceSerde);   

  topology.addSource("stocks-source",
                    stringDeserializer,
                    stockTransactionDeserializer,
                    "stock-transactions")

For demo purposes only
It goes without saying, but I’ll state the obvious: these stock price evaluations are
only for demonstration purposes. Please don’t infer any actual market-forecasting
ability from this example. This model bears no similarity to a real-life approach and
is presented only to demonstrate a more complex processing situation. I’m certainly
not a day trader!

Listing 10.5 Stock-performance application with a custom processor

Yes

No

Hold until conditions change.

Over the last X number of trades, has the price
or volume of shares increased/decreased
by more than 2%?

The current status of stock XXYY

Symbol: XXYY; Share price: $10.79; Total volume: 5,123,987

If the price and/or volume is increasing, sell.
If the price and/or volume is decreasing, buy.

Figure 10.5 Stock trend updates
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P

          .addProcessor("stocks-processor",   
                    new StockPerformanceProcessorSupplier(storeBuilder),
                    "stocks-source")
          .addSink("stocks-sink",
                   "stock-performance",
                   stringSerializer,
                   stockPerformanceSerializer,
                   "stocks-processor");       

In this example, we’ve used a concrete implementation of the ProcessorSupplier
instead of a lambda expression. This is because the ProcessorSupplier interface
provides a stores method that will automatically wire up the processor with any
StoreBuilder instances you provide. The following listing provides the Stock-
PerformanceProcessorSupplier source code. 

public class StockPerformanceProcessorSupplier
       implements ProcessorSupplier<String, Transaction,
                                    String, StockPerformance> {
    StoreBuilder<?> storeBuilder;

    public StockPerformanceProcessorSupplier(StoreBuilder<?> storeBuilder) {
        this.storeBuilder = storeBuilder;
    }

    @Override
    public Processor<String, Transaction, String, StockPerformance> get() {
        return new StockPerformanceProcessor(storeBuilder.name());   
    }

    @Override
    public Set<StoreBuilder<?>> stores() {
        return Collections.singleton(storeBuilder);      
    }
}

With the ProcessorSupplier.stores method, you have a way to automatically wire
up StateStore instances to processors, which makes building topology a bit simpler
as you don’t need to call Topology.addStateStore with the names of the processors
having access to the store. 

 Since this stock performance topology has the same flow as the previous example,
we’ll focus on the new features in the processor. In the last example, you don’t have
any setup, so you rely on the ContextualProcessor.init method to initialize the
ProcessorContext object. In this example, however, you need to use a state store, and
you also want to schedule when you emit records instead of forwarding them each
time you receive them. 

 First, let’s look at the processor’s init() method, found in src/main/java/ bbejeck/
chapter_10/processor/StockPerformanceProcessor.java. 

Listing 10.6 ProcessorSupplier implementation

Adds the
processor to the
topology using a
rocessorSupplier

Adds a sink for 
writing out results

Returns a new instance of the
StockPerformanceProcessor

Returns the StoreBuilder instances to wire up
to the processor returned by the supplier
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@Override
public void init(ProcessorContext<String, StockPerformance> context) {
  super.init(processorContext);                         
  keyValueStore = context().getStateStore(stateStoreName);    
  StockPerformancePunctuator punctuator =
   new StockPerformancePunctuator(differentialThreshold,
                              context(),
                              keyValueStore);   
  context().schedule(10000,
                     PunctuationType.STREAM_TIME,
                     punctuator);     
 }
}

First, you need to initialize the ContextualProcessor with the ProcessorContext, so
you call the init() method on the superclass. Next, you grab a reference to the state
store you created in the topology. All you need to do here is set the state store to a vari-
able for use later in the processor. Listing 10.7 also introduces a Punctuator, an inter-
face that’s a callback to handle the scheduled execution of processor logic but is
encapsulated in the Punctuator.punctuate method. 

TIP The ProcessorContext.schedule(Duration, PunctuationType, Punctuator)
method returns a type of Cancellable, allowing you to cancel punctuation
and manage more advanced scenarios, like those found in the “Punctuate
Use Cases” discussion (http://mng.bz/YSKF). I don’t have examples or a
debate here, but I present some examples in src/main/java/bbejeck/chapter_
10/cancellation. 

In the last line of listing 10.7, you use the ProcessorContext (obtained via the context()
method call) to schedule the Punctuator to execute every 10 seconds. The second
parameter, PunctuationType.STREAM_TIME, specifies that you want to call Punctuator
.punctuate every 10 seconds based on the timestamps of the data. Your other option
is to select PunctuationType.WALL_CLOCK_TIME, which means the execution of
Punctuator.punctuate is scheduled every 10 seconds but driven by the system time
of the Kafka Streams environment. Let’s take a moment to discuss the difference
between these two PunctuationType settings. 

10.2.2 Punctuation semantics

Let’s start our conversation on punctuation semantics with STREAM_TIME, because it
requires more explanation. Figure 10.6 illustrates the concept of stream time (note
that I’m not showing some of the Kafka Streams internals). 

Listing 10.7 init() method tasks

Initializes ProcessorContext via the 
AbstractProcessor superclass Retrieving state store created

when building topology

Initializing the Punctuator 
to handle the scheduled 
processing

Schedules Punctuator.punctuate() 
to be called every 10 seconds

http://mng.bz/YSKF
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Let’s walk through some details to gain a deeper understanding of how the schedule is
determined:

1 The StreamTask extracts the smallest timestamp from the PartitionGroup.
The PartitionGroup is a set of partitions for a given StreamThread, containing
all timestamp information for all partitions in the group. 

2 During the processing of records, the StreamThread iterates over its Stream-
Task object, and each task will end up calling punctuate for each of its proces-
sors that are eligible for punctuation. Recall that you must collect a minimum
of 20 trades before you examine an individual stock’s performance. 

3 Suppose the timestamp from the last execution of punctuate (plus the scheduled
time) is less than or equal to the extracted timestamp from the Partition-Group.
In that case, Kafka Streams calls that processor’s punctuate() method. 

The critical point is that the application advances timestamps via the Timestamp-
Extractor, so punctuate() calls are consistent only if data arrives at a constant rate. If
your flow of data is sporadic, the punctuate() method won’t get executed at the regu-
larly scheduled intervals. 

Partition A Partition B

Because partition A has the smallest timestamp, it’s chosen first:
1) Process called with record A
2) Process called with record B

Now partition B has the smallest timestamp:
3) Process called with record C
4) Process called with record D

Switch back to partition A, which has the smallest timestamp again:
5) Process called with record E
6) punctuate called because time elapsed from timestamps is 5 seconds
7) Process called with record F

Finally, switch back to partition B:
8) Process called with record G
9) punctuate called again as 5 more seconds have elapsed, according to the timestamps

A:1
B:2
E:5
F:6

C:3
D:4
G:10

In partitions A and B,, the letter represents the record, and the number is
the timestamp. For this example, we’ll assume that is scheduled topunctuate
run every 5 seconds.

Figure 10.6 Punctuation scheduling using STREAM_TIME
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 With PunctuationType.WALL_CLOCK_TIME, on the other hand, the execution of
Punctuator.punctuate is more predictable, as it uses wall clock time. Note that sys-
tem-time semantics is best-effort; wall clock time advances in the polling interval, and
the granularity depends on how long it takes to complete a polling cycle. So, with the
example in listing 10.7, you can expect the punctuation activity to execute closer to
every 10 seconds, regardless of data activity. 

 Which approach you choose to use is entirely dependent on your needs. If you
need some activity performed regularly, regardless of data flow, using system time is
probably the best bet. On the other hand, if you only need calculations performed
on incoming data and some lag time between executions is acceptable, try stream-
time semantics. 

NOTE Before Kafka 0.11.0, punctuation involved the ProcessorContext
.schedule(long time) method, called the Processor.punctuate method at
the scheduled interval. This approach only worked on stream-time semantics;
both methods are now deprecated. I mention deprecated methods in this
book, but I only use the latest punctuation methods in the examples. 

Now that we’ve covered scheduling and punctuation, let’s move on to handling incom-
ing records.

10.2.3 The process() method

The process() method is where you’ll perform all your calculations to evaluate stock
performance. There are several steps to take when you receive a record:

1 Check the state store to see whether you have a corresponding StockPerformance
object for the record’s stock ticker symbol. 

2 If the store doesn’t contain the StockPerformance object, create one. Then, the
StockPerformance instance adds the current share price and share volume and
updates your calculations. 

3 Start performing calculations once you hit 20 transactions for any given stock.

Although financial analysis is beyond the scope of this book, we should look at the cal-
culations. You will perform a simple moving average (SMA) for the share price and
volume. In the financial trading world, SMAs are used to calculate the average for
datasets of size N. 

 You’ll set N to 20 for this example. Setting a maximum size means that as new
trades come in, you collect the share price and number of shares traded for the first
20 transactions. Once you hit that threshold, you remove the oldest value and add the
latest one. You get a rolling stock price and volume average over the last 20 trades
using the SMA. It’s important to note you won’t have to recalculate the entire amount
as new values come in.

 Figure 10.7 provides a high-level walk-through of the process() method, illustrat-
ing what you’d do if you performed these steps manually. The process() method is
where you’ll perform all the calculations. 
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Let’s look at the code that makes up the process() method, found in src/main/ java/
bbejeck/chapter_10/processor/StockPerformanceProcessor.java.

@Override
public void process(String symbol, StockTransaction transaction) {
 StockPerformance stockPerformance =
  ➥ keyValueStore.get(symbol);        

 if (stockPerformance == null) {
  stockPerformance = new StockPerformance();     
 }

 stockPerformance.updatePriceStats(
     ➥ transaction.getSharePrice());          
 stockPerformance.updateVolumeStats(
     ➥ transaction.getShares());           
 stockPerformance.setLastUpdateSent(Instant.now());  

 keyValueStore.put(symbol, stockPerformance);   
}

In the process() method, you take the latest share price and the number of shares
involved in the transaction and add them to the StockPerformance object. 

 There are two essential calculations: determining the moving average and calculat-
ing the stock price/volume differential from the current one. You want to calculate an
average once you’ve collected data from 20 transactions, so you defer doing anything
until the processor receives 20 trades. You calculate your first average when you have

Listing 10.8 process() implementation

1) Price: $10.79, Number shares: 5,000
2) Price: $11.79, Number shares: 7,000

20) Price: $12.05, Number shares: 8,000

As stocks come in, you keep a rolling average of share
price and volume of shares over the last 20 trades.
You also record the timestamp of the last update.

Before you have 20 trades, you take the average of
the number of trades you’ve collected so far.

1) Price: $10.79, Number shares: 5,000
2) Price: $11.79, Number shares: 7,000

20) Price: $12.05, Number shares: 8,000
21) Price: $11.75, Number shares: 6,500
22) Price: $11.95, Number shares: 7,300

After you hit 20 trades, you drop the oldest trade
and add the newest one. You also update the rolling
average by removing the old value from the average.

Figure 10.7 Stock analysis process() method walk-through

Retrieves previous performance 
stats, possibly null

Creates a new 
StockPerformance object if 
one isn’t in the state store

Updates the price 
statistics for this stock

Updates the volume 
statistics for this stock

Sets the timestamp 
of the last update

Places the updated 
StockPerformance 
object into the 
state store
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data from 20 trades for an individual stock. Then, you take the current value of the
stock price or the number of shares and divide it by the moving average, converting
the result to a percentage.

NOTE If you want to see the calculations, you’ll find them in streams/src/
main/java/bbejeck/chapter_10/StockPerformanceProcessor.

In the Processor example in listing 10.3, you forwarded the records downstream once
you worked through the process() method. In this case, you store the final results
in the state store and leave the records forwarding to the Punctuator-.punctuate
method. 

10.2.4 The punctuator execution

We’ve already discussed the punctuation semantics and scheduling, so let’s jump
straight into the code for the Punctuator.punctuate method, found in src/main/
java/bbejeck/chapter_10/processor/punctuator/StockPerformancePunctuator.java. 

@Override
public void punctuate(long timestamp) {
    try (KeyValueIterator<String, StockPerformance> performanceIterator
                           = keyValueStore.all()) {     

        while (performanceIterator.hasNext()) {
            KeyValue<String, StockPerformance> keyValue =
                            performanceIterator.next();
            String key = keyValue.key;
            StockPerformance stockPerformance = keyValue.value;

            if (stockPerformance != null) {
                if (stockPerformance.getPriceDifferential() >=
                                  differentialThreshold ||
                        stockPerformance.getShareDifferential() >=
                                    differentialThreshold) {   
                    context.forward(new Record<>(key,            
                                                 stockPerformance,
                                                 timestamp));
                }
            }
        }
    }
}

The procedure in the Punctuator.punctuate method is simple. You iterate over the
key-value pairs in the state store, and if the value has crossed over the predefined
threshold, you forward the record downstream. 

 In contrast, before, you relied on a combination of committing and cache flushing
to forward records; now, you define the terms for when records get forwarded. Addi-
tionally, even though you expect this code to execute every 10 seconds, that doesn’t

Listing 10.9 Punctuation code

Retrieves the 
iterator to go 
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If you’ve met or
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forwards the record
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guarantee you’ll emit records. They must meet the differential threshold. Also, note
that Kafka Streams doesn’t run the Processor.process and Punctuator.punctuate
methods concurrently. 

NOTE Although we’re demonstrating access to a state store, it’s an excellent
time to review Kafka Streams' architecture and review a few key points. Each
StreamTask has its own copy of a local state store, and StreamThread objects
don’t share tasks or data. As records make their way through the topology,
each node is visited in a depth-first manner, meaning there’s never concur-
rent access to state stores from any given processor.

This example has given you an excellent introduction to writing a custom processor.
You can also take writing custom processors a bit further by creating an entirely new
way of aggregating data that doesn’t currently exist in the API. With this in mind, we’ll
move on to adding data-driven aggregation. 

10.3 Data-driven aggregation
We discussed aggregation in chapter 7, when we covered stateful operations in Kafka
Streams. But imagine you have different requirements for creating an aggregation.
Specifically, instead of having windows based on time, you want to have a “window”
based on specific aspects of the incoming events. You’ll want only to include events
that meet a given criteria in an aggregation and forward the results once an incoming
record no longer meets that criteria. 

 For example, you are responsible for a production line at a prominent manufac-
turer, Waldo Widgets. To control costs and improve efficiency, you installed several
sensors that continually send information about essential indicators in the manufac-
turing process. All the sensors transmit their data to Kafka. You’ve determined over
time that the temperature sensors are one of the best leading indicators for trouble in
the manufacturing process. Prolonged temperature spikes are almost always followed
by a costly production line shutdown, sometimes for hours, until a site reliability engi-
neer (SRE) can service the machine or, in the worst case, replace it. 

 So, you’ve determined that you’ll need to create a Kafka Streams application to
help monitor the temperature sensor readings. From your experience, you’ve devel-
oped some requirements for the exact information you need. What you’ve been able
to put together over the years is that when a machine is about to have trouble, it will
start with smaller spikes in temperature reading, leading to progressively more pro-
longed periods of increased temperature over time.

 What you need is an aggregation of only the increased temperatures. Getting a
constant flow of all temperature readings is counterproductive; it’s simply too much
information to be worthwhile otherwise. You spend some time coming up with the
precise requirements you want from your new application:

 If the temperature is below a given threshold, ignore it.
 Once it rises above the threshold, start an aggregation window.
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 Continue the aggregation as long as the readings exceed the threshold.
 When the readings reach a given number, emit the aggregation.
 Once a reading drops below the threshold, cease the aggregation and immedi-

ately emit the aggregation result.
 Since the sensors have a known history of spotty network connections, if more

than 10 seconds elapse without either a closing reading or an additional high
reading, go ahead and emit the aggregation.

This approach will enable the dashboard application to display the information your
team needs to take action. You start looking at the Kafka Streams DSL API and focus
on the windowed aggregations. From reading, you decide you’d like to use an aggre-
gation with SessionWindow as it’s driven by behavior instead of time. However, it
would be best to have fine-grained control of what to include in the aggregation and
when to emit the results. So, you turn your attention to the Processor API and write
your own data-driven windowing behavior. 

 You’ve built Kafka Streams Processor API applications before, so you dive right in
and start on the Processor implementation you’ll need to complete the task. The fol-
lowing listing provides the start of the ProcessorSupplier you’ve come up with. 

public class DataDrivenAggregate implements
        ProcessorSupplier<String, Sensor, String, SensorAggregation> {

    private final StoreBuilder<?> storeBuilder;   
    private final Predicate<Sensor> shouldAggregate;   
    private final Predicate<Sensor> stopAggregation;   

    public DataDrivenAggregate(final StoreBuilder<?> storeBuilder,
                           final Predicate<Sensor> shouldAggregate,
                           final Predicate<Sensor> stopAggregation) {
      this.storeBuilder = storeBuilder;
      this.shouldAggregate = shouldAggregate;
      this.stopAggregation = stopAggregation;
    }

So when creating the ProcessorSupplier, you provide two Predicate instances to
determine when to start an aggregation or include a record in the current aggrega-
tion. The second one chooses when to reject a record from the aggregation, which
shuts the aggregation off. Let’s look at the Processor implementation that the sup-
plier returns. 

private class DataDrivenAggregateProcessor extends
        ContextualProcessor<String, Sensor, String, SensorAggregation> {

Listing 10.10 ProcessorSupplier 

Listing 10.11 Processor Implementation
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    KeyValueStore<String, SensorAggregation> store;
    long lastObservedStreamTime = Long.MIN_VALUE;

  @Override
  public void init(ProcessorContext<String, SensorAggregation> context) {
        super.init(context);
        store = context().getStateStore(storeBuilder.name());   
        context().schedule(Duration.ofSeconds(10),             
                           PunctuationType.WALL_CLOCK_TIME,
                           this::cleanOutDanglingAggregations);
    }

Initializing the Processor is straightforward and looks very similar to the other pro-
cessor implementations you’ve built before. However, the interesting logic occurs in
the process method. 

@Override
public void process(Record<String, Sensor> sensorRecord) {
    lastObservedStreamTime =
         Math.max(lastObservedStreamTime,
                  sensorRecord.timestamp());           
    SensorAggregation sensorAgg = store.get(sensorRecord.key());
    SensorAggregation.Builder builder;
    boolean shouldForward = false;

    if (shouldAggregate.test(sensorRecord.value())) {   
        if (sensorAgg == null) {
            builder = SensorAggregation.newBuilder();
            builder.setStartTime(sensorRecord.timestamp());
            builder.setSensorId(sensorRecord.value().getId());
        } else {
            builder = sensorAgg.toBuilder();
        }
        builder.setEndTime(sensorRecord.timestamp());
        builder.addReadings(sensorRecord.value().getReading());
        builder.setAverageTemp(builder.getReadingsList()
                                      .stream()
                                      .mapToDouble(num -> num)
                                      .average()
                                      .getAsDouble());
        sensorAgg = builder.build();
        shouldForward  =
              sensorAgg.getReadingsList().size() % emitCounter == 0;   
        store.put(sensorRecord.key(), sensorAgg);

    } else if (stopAggregation.test(sensorRecord.value())   
                          && sensorAgg != null) {
        store.delete(sensorRecord.key());
        shouldForward = true;
    }

Listing 10.12 DataDrivenAggregateProcessor process method implementation
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    if (shouldForward) {                                       
        context().forward(new Record<>(sensorRecord.key(),
                                       sensorAgg,
                                       lastObservedStreamTime));
    }
}

Since the logic for the aggregation is straightforward, I’m only going to discuss the
main points of this method. We update the lastObservedStreamTime variable. Stream
time only moves forward, so we don’t unquestioningly accept the timestamp from the
incoming record; instead, we’ll reuse the existing stream time value should an out-of-
order record arrive. You’ll see the importance of the lastObservedStreamTime vari-
able in the next section when we cover the method punctuation executes. 

 The second annotation in listing 10.12 gets to the crux of this processor: Does the
record belong in an aggregation? If yes, you’ll create a new aggregation object or add
the record to an existing one. Additionally, a few lines of code further down, you’ll see
where the shouldForward variable is set to true or false, indicating whether there
are enough readings to require forwarding the aggregation before it closes. Since we
can only count on sometimes having a small number of readings, we’ll want to emit
intermediate aggregation results. The final line in this section stores the aggregation
in the state store. 

 If the first if block doesn’t evaluate to true, we’ll end up at the second predicate.
If the record matches the stopAggregation condition, the temperature reading
dropped below the threshold. If there is an existing aggregate, it’s deleted from the
state store, and the shouldForward gets set to true. The processor ignores the record
if it doesn’t meet the threshold and there’s no current aggregation. Finally, if the
shouldForward variable evaluates to true, the processor forwards the aggregation to
any downstream processors. 

 At this point, we’ve covered the main requirements of this processor, creating a
“windowed” (setting a start and ending timestamp) aggregation determined by some
aspects of the record data—in this case, the temperature sensor reading. We have one
last requirement to take care of. We’ll want to clear the aggregation and forward the
results if we don’t receive any updates for a given period. The scheduled punctuation
handles this final requirement. Let’s take a look at the punctuation code now.

void cleanOutDanglingAggregations(final long timestamp) {
 List<KeyValue<String, SensorAggregation>> toRemove = new ArrayList<>();
  try (KeyValueIterator<String, SensorAggregation> storeIterator
                                                     = store.all()) {  
        while (storeIterator.hasNext()) {
         KeyValue<String, SensorAggregation> entry = storeIterator.next();

Listing 10.13 Punctuation code

Guard condition; checks whether the
processor should forward the aggregate

Gets an iterator over the contents of the aggregation store



31910.4 Integrating the Processor API and the Kafka Streams API
          if (entry.value.getEndTime() <
                                 (lastObservedStreamTime - 10_000)) {  
                toRemove.add(entry);
            }
        }
    }
    toRemove.forEach(entry -> {   
        store.delete(entry.key);
        context().forward(new Record<>(entry.key,
                                       entry.value,
                                       lastObservedStreamTime));
    });
}

The scheduled punctuation will be executed every 10 seconds (wall clock time) and
will examine all the records in the state store. If a timestamp is more than 10 sec-
onds behind the current stream time (meaning it hasn’t had an update in that
amount of time), it’s added to a list. After iterating over the records in the store, the
resulting list iterates over its contents, removing the record from the store and for-
warding the aggregation.

 This concludes our coverage of using the Processor API to provide functionality
unavailable to you in the DSL. While it’s a made-up example, the main point is that
when you want finer-grained control over emitting records from an aggregation and
custom calculations, the Processor API is the key to achieving that objective. 

10.4 Integrating the Processor API and 
the Kafka Streams API
So far, our coverage of the Kafka Streams and the Processor APIs has been separate,
but you can still combine approaches. Why would you want to mix the two methods?

 Let’s say you’ve used the Kstream and Processor APIs for a while. You’ve come to
prefer the Kstream approach, but you want to include some previously defined pro-
cessors in a Kstream application because they provide the lower-level control you
need. Or it could be that you need some specific behavior not offered by the DSL but
only in a portion of the topology. You can complete the rest with the DSL.

 The Kafka Streams API offers a method, KStream.process(), that allows you to
plug in functionality built using the Processor API. Introduced in version 3.0.0, it rep-
resents a new approach for combining the Processor API in the Kstream DSL from
previous versions. The new process is a significant improvement, as it brings the
much-desired functionality of forwarding records directly to downstream processors,
where previously only transformValues allowed for direct forwarding. 

NOTE There is a deprecated KStream.process method, but its return type
is void, and it takes an org.apache.kafka.streams.processor.Processor-
Supplier; also, all the various transformXXX methods are deprecated as well. 

Checks whether the
end timestamp of
the aggregation is
within 10 seconds

of stream time

For each entry that hasn’t received an update in 
time, removes it from the store and forwards it



320 CHAPTER 10 The Processor API
To get an understanding of how to combine the DSL and the Processor API, let’s look
at an example, found in src/main/java/bbejeck/chapter_10/StockPerformance-
DslAndProcessorApplication.java. Since I’ve already described the functionality of the
stock performance application previously in this chapter, I won’t repeat it here (some
details are omitted for clarity). We’ll see how to combine the Kstreams DSL and the
Processor API.

StreamsBuilder builder = new StreamsBuilder();
StoreBuilder<KeyValueStore<String, StockPerformance>> storeBuilder =
                 Stores.keyValueStoreBuilder(storeSupplier,
                                             Serdes.String(),
                                             stockPerformanceSerde);

builder.stream(INPUT_TOPIC,  
              Consumed.with(stringSerde, stockTransactionSerde))
        .process(
➥ new StockPerformanceProcessorSupplier(
                            ➥ storeBuilder))   
        .peek(printKV("StockPerformance"))
        .to(OUTPUT_TOPIC,
            Produced.with(stringSerde, stockPerformanceSerde));

So here, you’ve created the KStream instance as you would typically with the DSL. Still,
you’ve injected your custom StockPerformanceProcessor (provided by the Stock-
PerformanceProcessorSupplier) in the middle of the topology. Essentially, you’ve
simplified your topology to use the DSL for everything other than the custom proces-
sor. In many cases, using the new KStream.process method will be the best approach
for adding custom logic when confined to one processor. 

 At this point in the book, we’ve covered how you can build applications with Kafka
Streams. Our next step is to look at how to configure these applications optimally,
monitor them for maximum performance, and spot potential problems. 

Summary
 The Processor API gives you more flexibility at the cost of more code. The

tradeoff for being able to provide any logic you want is that you have to wire the
entire topology together manually explicitly.

 Although the Processor API is more verbose than the Kafka Streams API, it’s
still easy to use, and the Processor API is what the Kafka Streams API uses under
the covers.

 When deciding which API to use, consider using the Kafka Streams DSL and
integrating the process() method to provide your custom processor. If you
only have one, the mix-in approach is the way to go. If you have several custom
processors or specific routing requirements, going wholly with the Processor
API may be the better approach. 

Listing 10.14 Example of mixing the DSL and the Processor API

Creates a stream 
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At this point in the book, we’ve learned about several components of the Kafka
event streaming platform—Kafka Connect for integrating external systems and
Kafka Streams for building an event streaming application. These two components
together form the bedrock of building event streaming applications. In this chap-
ter, you will learn about ksqlDB, which allows you to use those components by
writing SQL to construct an event streaming application. ksqlDB is a “streaming
database purpose-built for streaming applications” (https://ksqldb.io/). It will enable
you to build powerful streaming applications with a few SQL statements.

 So why would you use ksqlDB? For starters, it vastly simplifies the application
development process. With ksqlDB, you’re not working with code or configuration
files. You write your SQL queries and execute them, which launches a continually
running application where you can get instant notification of events.

This chapter covers
 Understanding ksqlDB

 More about streaming queries

 Building streaming applications with SQL 
statements

 Creating materialized views over streams

 Using ksqlDB advanced features
321
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 Imagine you’re working with business analysts at the Fintech company Big Short
Equity. They’ve seen the applications you’ve built using Kafka Streams. They want the
ability to construct near-real-time financial analysis applications, but their primary
skill is not writing Java code. While you can support the analysts’ needs and build the
required Kafka Streams apps, it would be far more efficient if the analysts could
make them independently. The analysts are experts in SQL, as most of their work
involves writing queries on relational databases. You have the idea of introducing
ksqlDB to them; it provides scalable, distributed stream processing, including aggre-
gations, joins, and windowing. But unlike running a SQL query against a typical rela-
tional database, where the query will return results and stop, the results of a ksqlDB
query are continuous.

 You’ll want to use ksqlDB because you can quickly build a powerful event-streaming
application in the same time it takes you to write a SQL query! So, what you’re going
to learn in this chapter is how to apply what you’ve learned so far about building
event-streaming applications by using the familiar syntax of an SQL query. ksqlDB
uses Kafka Streams under the covers, so all the concepts from the previous chapters
also apply here. Additionally, the ksqlDB server provides direct integration with Kafka
Connect so that you can build an entire end-to-end solution without any code. We’ll
start with the basic concepts of a stream and a table and how ksqlDB handles different
data formats, including JSON, Avro, and Protobuf. Finally, we’ll explore more advanced
aggregations, joins, and windowed operations options.

11.1 Understanding ksqlDB
Earlier in the book, we discussed the concepts of an event-stream and an update-
stream. Remember, an event stream is an infinite sequence of independent events.
Records in an event stream with the same key aren’t related; each stands alone as an
event. But an update stream is a little different. An update stream is also infinite, but
events with the same key as a previous event are considered an update to that event.
ksqlDB has the same concept: you can query from a Stream or a Table. Additionally,
you can perform a point-in-time query against a materialized view or a stream. 

 So, let’s get started with your first ksqlDB query. To make the comparison to a
Kafka Streams application more accessible, we’ll repurpose the Yelling app, intro-
duced in chapter 6.

NOTE You can deploy ksqlDB in one of three ways: in standalone mode, as a
cluster on-premises, or in Confluent Cloud. In this book, you’ll work with
ksqlDB in standalone mode via Docker. Later in the chapter, we’ll cover the
ksqlDB architecture in more detail.

First, we need to create a STREAM from a Kafka topic.

ksql> CREATE STREAM input_stream (phrase VARCHAR) WITH
 (kafka_topic='src-topic', partitions=1, value_format='KAFKA');

Listing 11.1 Creating a STREAM in ksqlDB
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So, the first step is to create a ksqlDB STREAM. In this case, you’ve made a STREAM
named input_stream based on the topic src-topic.

NOTE For all the ksqlDB examples, I’m going to assume you are using one of
the docker compose files (arm64_ksqldb-docker-compose.yml or x86_ksqldb-
docker-compose.yml, depending on the architecture of your laptop) included
in the source code. Once you’ve run the docker compose -f <file name> up
command, you’ll want to open a new terminal window and run docker exec
-it ksqldb-cli ksql http://ksqldb-server:8088. This command will start
a ksqlDB command-line interface (CLI) session. Consult the README for
chapter 11 in the source code for complete instructions. Also, these com-
mands should work if you choose to use ksqlDB on Confluent Cloud.

After you execute the CREATE STREAM… command, you should see something like the
following listing on the ksqlDB CLI screen.

Message
----------------
 Stream created
----------------

TIP You can confirm the STREAM objects you’ve created by running the com-
mand show streams; from the CLI.

Now that you have a STREAM, the next step is to populate the underlying topic so you
can start yelling! You could use a KafkaProducer to produce records to the topic, but
let’s stick with SQL commands for now. Run a few inserts like the following listing.

INSERT INTO input_stream (phrase) VALUES (
  'Chuck Norris finished World of Warcraft');
INSERT INTO input_stream (phrase) VALUES (
  'Chuck Norris first program was kill -9');
INSERT INTO input_stream (phrase) VALUES (
  'generate bricks-and-clicks content');
INSERT INTO input_stream (phrase) VALUES (
  'brand best-of-breed intermediaries');
.....

Using INSERT INTO.. statements is a great way to get going quickly with ksqlDB. But in
practice, after you’ve completed some quick prototyping, you’ll want to get data into the
topic more efficiently, like a KafkaProducer or the results of another ksqlDB query.

 The next step is to create a continuous or push query. Before we do that, let’s go
over some background information. In ksqlDB, since the queries are based on data
from a Kafka topic, they run continuously, as an event stream never stops. So, once
you start a query, it will continue evaluating the incoming data until you explicitly stop

Listing 11.2 Result of the CREATE STREAM… statement

Listing 11.3 Insert statements for loading data into a stream
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it. These are push queries because the results are “pushed” to the client that issued
the query. We’ll cover the clients you have to give a ksqlDB query to later in the chap-
ter. You’ll also learn about another query type called a pull query that yields point-in-
time results from a materialized store. If these terms seem unfamiliar to you, don’t
worry; we’ll clarify them later in the chapter when we cover them.

 With our background information complete, let’s get back to writing the query
that will be your streaming application.

CREATE STREAM yelling AS          
  SELECT UCASE(phrase) AS SHOUT  
  FROM input_stream
  EMIT CHANGES;    

Congratulations, with a simple query statement, you have a streaming application!
Notice that you used a ksqlDB built-in function to perform the uppercase of the
phrase. There are several built-in functions available. We’ll cover functions as we go
along in the chapter.

 Before going on, let’s compare this application to your first Kafka Streams applica-
tion, the Yelling app. By comparing the two, you’ll understand what ksqlDB is and
what it can do when developing a streaming application. Let’s start by looking at the
Kafka Streams version.

Serde<String> stringSerde = Serdes.String();
StreamsBuilder builder = new StreamsBuilder();

builder.stream("src-topic",
                Consumed.with(stringSerde, stringSerde))
        .peek(sysout)
        .mapValues(value -> value.toUpperCase())
        .peek(sysout)
        .to("out-topic",
                Produced.with(stringSerde, stringSerde));

As far as Kafka Streams applications go, this one is straightforward. One of the bene-
fits of using the Kafka Streams DSL is that it’s primarily declarative versus imperative.
This means you’re specifying what you want to do (declarative) instead of how to do it.
What’s the significance of this difference? The declarative approach is more straight-
forward to express and understand.

 For example, let’s say you’ve invited a friend over for dinner, and they ask if you
need something, and you ask them to pick up a bottle of red wine. That would be a
declarative statement. You left the decision of where and when to pick it up to your
friend. Now, contrast that with having to give directions to a beer and wine store,

Listing 11.4 A continuous query that becomes your streaming application

Listing 11.5 Kafka Streams version of the Yelling app
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where to find it in the store, what to do if your favorite brand isn’t available, etc.—that
level of instruction is imperative. I could go on, but you get the point I’m trying to
make here.

 Using Kafka Streams versus raw or plain KafkaConsumer and KafkaProducer
instances greatly simplifies your application development effort, but ksqlDB takes that
to another level. The following listing shows what you used to create the same stream
application with ksqlDB.

CREATE STREAM yelling AS SELECT UCASE(phrase) AS SHOUT FROM input_stream
    EMIT CHANGES;

Just one line of text, a SQL statement, is all it took to create the Yelling application in
ksqlDB.

 While the Kafka Streams version is still elementary to build, you must provide
Serde instances, create the StreamBuilder instance, compile and run the code, etc.
This effort of developing a streaming application gets more significant as you start to
build more complex applications. Another benefit, and arguably the most important,
to using ksqlDB is that since it uses SQL, it opens the door to nondevelopers to create
streaming applications.

 Note that under the covers, a ksqlDB SQL statement compiles down to a Kafka
Streams application. So, while you’re using SQL, it’s beneficial to understand Kafka
Streams when using ksqlDB.

 Does this mean that ksqlDB will solve all your problems and you no longer need
Kafka Streams? Certainly not. No single tool can do everything, and Kafka Streams will
always have a place in building powerful event streaming applications. ksqlDB is
another powerful means at your disposal.

 Next, let’s dive into a more complex and realistic example and simultaneously
learn about using the TABLE abstraction, which tracks the latest record for a given key. 

11.2 More about streaming queries
Earlier in the book, you learned about the concepts of KStream and KTable in Kafka
Streams (see chapters 6 and 7, respectively). The KStream is an event stream, where
records (key-value pairs) with the same key are independent events, but with the KTa-
ble, an update stream, events with the same key are updates to a previous event with
the same key. In ksqlDB, the STREAM and TABLE concepts follow the same rules. Let’s
dig deeper with a more realistic example than the Yelling application. We’ll dig into
more details of working with ksqlDB along the way. 

 Let’s say you’ve started a fitness website that encourages members to get in as
many “steps” per day as possible. But members can do other activities that count
toward steps, not just running or walking. After some influences endorsed your appli-
cation, your traffic has grown significantly, and you’d like to encourage the growth

Listing 11.6 ksqlDB version of the Yelling app
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by offering the ability to display the “step” leaders in near-real time and have it
updated regularly.

 You have a mobile application that updates user results to a backend server run-
ning in the cloud. The server takes the information from the mobile applications and
produces user activity updates to a Kafka topic named user_activity. This topic is
the starting point enabling you to publish updates to the website, and your first step is
to create a STREAM based on it. 

CREATE STREAM user_activity (first_name VARCHAR,    
                             last_name VARCHAR,
                             activity VARCHAR,
                             event_time VARCHAR,
                             steps INT

     ) WITH (kafka_topic='user_activity',
            partitions=4,
            value_format='JSON',
            timestamp = 'event_time',        
            timestamp_format = 'yyyy-MM-dd HH:mm:ss'    
     );

You have a SQL statement here creating the user_activity stream. The underlying
value in the topic is in JSON, and you’ve specified the JSON’s structure as the stream’s
column names. The WITH statement contains properties ksqlDB uses for handling the
stream, and this time, we’ve added a couple of new items, properties named time-
stamp and timestamp_format. 

 You’re using these properties to instruct ksqlDB to use a field embedded in the
record itself as the timestamp for the record. If you recall from chapter 4, a Kafka-
Producer embeds a timestamp into a record when it produces to Kafka. The producer
added a timestamp, which is the event time for the record. Usually, the producer
timestamp is close enough to serve as the official time of an event. But in some
cases, you may not want to use the timestamp set by the producer but one set on the
record’s value. 

 Why would you want to use a value-embedded timestamp instead? While there could
be many reasons, the chief reason would be when the timestamp on the record rep-
resents a more accurate reflection of when the event occurred. In our case, the time-
stamp on the record is when the user made the entry on your fitness application. The
timestamp from the producer reflects when it received the record from your application
server. While these two should be very close in practice when awarding points or prizes,
tracking when the user entered on their mobile device is more important.

 So, to enable using the embedded timestamp, you provide the timestamp property
in the WITH clause, and it specifies the column to use for the event time versus the one
Kafka provides. Since you have the event_time field as a string, you need to tell
ksqlDB its format, which you’ve done with the timestamp_format property. 

Listing 11.7 Creating the stream
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 In practice, it’s prevalent to use a long primitive for the timestamp in event objects
since it represents the number of milliseconds in the Unix epoch time (time in milli-
seconds since January 1, 1970). In those cases where you have a long for the time-
stamp, you would use a type of BIGINT for the timestamp column, and in the WITH
clause, you’d only need to specify the column name since ksqlDB can work with the
field directly. So, in that case, you’d update the query to create the stream like the fol-
lowing listing. 

CREATE STREAM user_activity (first_name VARCHAR,
                             last_name VARCHAR,
                             activity VARCHAR,
                             event_time BIGINT,   
                             steps INT

     ) WITH (kafka_topic='user_activity',
            partitions=4,
            value_format='JSON',
            timestamp = 'event_time'    
     );

You’re using a type of BIGINT as that is the numeric type for an 8-byte number in
ksqlDB. The backing type in Java is long. But that raises the question: What if you
want to use the producer-provided timestamp? ksqlDB has a system column for each
record called ROWTIME, containing the timestamp from the underlying Kafka record.
The term system column means it’s provided automatically by ksqlDB. You don’t need to
do anything with it. We’ll see an example of using ROWTIME in section 11.3. Before we
move on with our example of the fitness steps application, we should cover some addi-
tional information about the WITH clause. For review, the following listing provides the
WITH clause from the user_activity stream. 

WITH (kafka_topic = 'user_activity',  
      partitions = 4,          
      value_format = 'JSON',              
      timestamp = 'event_time',         
      timestamp_format = 'yyyy-MM-dd HH:mm:ss'     
     );

NOTE We’ve already discussed the timestamp-related properties earlier in
this section, so I won’t review them again.

You’ll notice that we specify the topic name. This topic will be the data source for the
stream of user activity records. Remember, ksqlDB continuously evaluates the query

Listing 11.8 Creating the stream with event time as a long

Listing 11.9 WITH clause from the user_activity stream
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over the incoming records of a topic and not a relational database table. The parti-
tions entry specifies the number of partitions of the topic. Take note that the kaf-
ka_topic property is always required. 

 Since ksqlDB uses Kafka Streams under the covers, why are you telling it the num-
ber of partitions of the input topic? After all, you only provide the topic’s name, and
Kafka Streams takes care of everything needed to consume from the topic properly. If
the underlying topic doesn’t exist when you create the stream, ksqlDB will attempt to
make it.

 But if the topic does exist, ksqlDB will not overwrite it. An important point to
note is that when you provide the partitions property for the STREAM and the topic
exists, the number of partitions you specify must match the actual number of parti-
tions. Otherwise, you’ll get an error. You can safely omit the partitions property if
the topic exists. 

 When quickly developing or prototyping in a local environment, having ksqlDB
create the topics can be a time saver. But in a production setting, it’s best always to cre-
ate the topics you need ahead of time to ensure clarity and communication about the
structure of your applications.

 The last part of setting stream properties we’ll cover here is the value_format set-
ting. As you might have guessed, this tells ksqlDB the value format in the key-value
pair. There is a setting for the key as well—key_format. The acceptable entries for
either the key_format and value_format properties include:

 JSON

 JSON_SR

 AVRO

 PROTOBUF

 PROTOBUF_NOSR

 NONE

 KAFKA

 DELIMITED

While I won’t go into a whole discussion here on the different types (I’ll refer you to
the ksqlDB documentation instead: http://mng.bz/ZEZP), it will be worthwhile to
point out a few critical points. The JSON_SR, AVRO, and PROTOBUF formats use Schema
Registry. To use Schema Registry with ksqlDB, you must provide the HTTP endpoint
(as you did with either the Kafka clients or Kafka Streams) via the ksql.schema
.registry.url property.

 We’ll cover configuration options for ksqlDB in a later section. If you’re using
Schema Registry, ksqlDB will automatically register a schema as needed. But this raises
an important point: if you have an existing schema for a given value or key, you can
provide the schema ID for the key or value in the WITH statement when setting the
properties for your stream. For example, let’s say you used Avro for the values in the
fitness step application. In that case, you would use the stream in the following listing. 

http://mng.bz/ZEZP
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CREATE STREAM user_activity
WITH ( kafka_topic = 'user_activity',
       value_format = AVRO,          
       value_schema_id = 1    
     )

You specify that the value uses Avro for the serialization. Still, you also provide the
schema ID so it can retrieve the precise version of the schema from Schema Regis-
try. This ability to use the exact schema version is essential when ksqlDB either con-
sumes from or writes to a topic that other applications work with, as all clients must
use the same schema; otherwise, your application will likely experience errors due
to data formatting errors. If you don’t provide the schema ID, ksqlDB will retrieve the
latest version of the schema. ksqlDB will assume the subject name for the schema is
<topic-name-key> or <topic-name-value>. We covered Schema Registry in chapter 3,
so you can refer back to it if you need to refresh your understanding of Schema Reg-
istry concepts.

 You’ll also notice that you didn’t define any columns for the stream. That’s
because when using serialization format supported by Schema Registry, ksqlDB will
infer the column names and field types from the schema. In our current example, we
specified the column names and types because we’re using plain JSON for the data
format, and there’s no inferencing available. We’ll cover using ksqlDB with Schema
Registry in more detail in section 11.5, but for now, let’s get back to building the fit-
ness step application. For review, the following listing shows the initial query.

CREATE STREAM user_activity (first_name VARCHAR,
                             last_name VARCHAR,
                             activity VARCHAR,
                             event_time VARCHAR,
                             steps INT

     ) WITH (kafka_topic='user_activity',
            partitions=4,
            value_format='JSON',
            timestamp = 'event_time',
            timestamp_format = 'yyyy-MM-dd HH:mm:ss'
     );

With this stream in place, you’re primed to build the often-requested new feature, a
leaderboard. You add up the steps for a given activity and present the results in sorted
order from highest to lowest. To create the first leaderboard stat, you must perform an
aggregation, which is, in this case, just a simple sum of the steps column.

 
 

Listing 11.10 Specifying the schema ID when constructing the stream

Listing 11.11 Initial query for building the fitness step application
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CREATE TABLE activity_leaders AS    
  SELECT
     last_name,
     SUM(steps)          
FROM user_activity
GROUP BY last_name   
EMIT CHANGES;

When you use aggregation in ksqlDB, the query’s result is a TABLE, so we’ll need to
explicitly create one with our query. Also note that just like when you query a rela-
tional database, you must include the columns in the SELECT statement in the GROUP
BY clause. So you’ve created a table or materialized view of an aggregation, a SUM. It
will continue to provide results since it’s selecting from the underlying stream
user_activity, so whenever new results end up on the user_activity stream, your
table here updates with new results. Additionally, ksqlDB creates a changelog topic to
ensure the aggregation records are backed up should the ksqlDB server running the
table query experience any issues. 

 You should also note that under the covers, creating this table creates a new topic
in Kafka named activity_leaders by default since that’s the table’s name. If you
want to use a different name for the underlying topic supporting the table, you can
provide the topic name in a WITH statement, and we’ll see just how to do that next. 

 Initially, this query works for you, and your customers in your demo preview
respond well to the leader dashboard. But in the solicited feedback, there are several
comments for you to update the dashboard with more details. First, the results com-
bine the steps score across all activities. They are only displayed with the user’s last
name, making it difficult to disambiguate the differences between your app members
with the same last name.

 Based on user feedback, you decide to put the release on hold and pursue the
required changes. Since you’re in a development environment for the preview, you’d
like to clean up the table query. Because you plan on a complete revamp of the
activity_leaders table, removing the backing topic would also be a good idea. So,
your next step to clean things up is to run the command in the following listing.

DROP TABLE activity_leaders DELETE TOPIC;

This command will delete the table from ksqlDB and the backing topic. Note it only
marks the topic for deletion, the actual removal of the topic is asynchronous and
occurs eventually when the broker cleans up resources.

NOTE The DELETE TOPIC clause at the end is optional. If you want to keep the
records in the topic, consider leaving the delete clause off the command.
Also, you can add IF EXISTS to your command so it won’t error out should a

Listing 11.12 Adding a sum aggregation for calculating leaders in a category
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table you’re trying to delete not exist. So the command would look like DROP
TABLE IF EXISTS activity_leaders DELETE TOPIC. 

Now that you’ve cleaned up the existing table, you go about redefining your table
query and decide that adding the first name and the activity type should satisfy the
user comments. You’ll get to distinguish between users and see the leaders for each
activity type. Since you’re proficient in SQL, it doesn’t take you long to come up with
the query.

CREATE TABLE activity_leaders AS
  SELECT
     first_name,
     last_name,
     activity,
     SUM(steps)
FROM user_activity
GROUP BY first_name, last_name, activity
EMIT CHANGES;

Your updated query is essentially the same, but now you’re selecting additional col-
umns, first_name and activity. Since you’ve added two columns in the select por-
tion of the SQL, you’ll need to add those columns in the GROUP BY clause. This is
required because, with an aggregation, we’ll need to group the records by the selected
fields to form unique results. The grouping acts as a “key” for the aggregation. You
execute the new table statement in the ksqlDB CLI, and you see an unexpected error. 

Key format does not support schema.
format: KAFKA
schema: Persistence{columns=[`FIRST_NAME` STRING KEY, `LAST_NAME`
  STRING KEY, `ACTIVITY` STRING KEY], features=[]}
reason: The 'KAFKA' format only supports a single field.  Got:
  [`FIRST_NAME` STRING KEY, `LAST_NAME` STRING KEY, `ACTIVITY` STRING KEY]

This detailed error message explains things well, but let’s add more information.
When ksqlDB attempts to create the underlying topic for the table, the primary key
type will default to KAFKA, meaning it must be a scalar type supported by Kafka—a
string or integer, for example. But here, you’ve provided three columns to make up
a composite key. You need to do this because you’re grouping by these three col-
umns to ensure the results are unique per row, so three fields won’t work with a
schema-less key.

 Fortunately, there is a simple solution to getting your updated query to work.
You’ll need to specify the key format for the new table to one that supports a schema;
in this case, we’ll use JSON. To do this, we’ll make a slight change to the query and add
a WITH statement.

Listing 11.14 Updating the sum aggregation for leaders per activity and full name

Listing 11.15 Error creating a GROUP BY with multiple columns
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CREATE TABLE activity_leaders WITH (KEY_FORMAT = 'JSON') AS
  SELECT
     first_name,
     last_name,
     activity,
     SUM(steps)
FROM user_activity
GROUP BY first_name, last_name, activity
EMIT CHANGES;

By adding WITH (KEY_FORMAT = 'JSON'), your new table will now use JSON and create
a composite key containing the first_name, last_name, and activity columns. But
you’re not quite done yet, as this change will make the query successful in performing
the aggregation, but the group-by columns are in the key and won’t show up in the
final results.

 So you’ll need to instruct ksqlDB that you want those columns in the value portion
of the results (remember, Kafka works in key-value pairs). Again, you’ll quickly
achieve this using the AS_VALUE function, which also instructs ksqlDB to copy a row’s
key into its value. You’ll need to keep the original columns in the select statement and
add an AS_VALUE function for each key you want copied into the value. 

CREATE TABLE activity_leaders WITH (KEY_FORMAT = 'JSON') AS
  SELECT
     first_name as first_name_key,     
     last_name as last_name_key,       
     activity as activity_key,         
     AS_VALUE(first_name) as first_name,     
     AS_VALUE(last_name) as last_name,       
     AS_VALUE(activity) as activity,         
     SUM(steps) as total_steps
FROM user_activity
GROUP BY first_name, last_name, activity
EMIT CHANGES;

You now have a working aggregate query with multiple GROUP BY items, essentially a
composite key for each row. Note that this is not something you need to do with all
aggregations in ksqlDB. But having multiple columns you are grouping by is familiar
enough that it’s worth us explaining how to handle the situation.

 What you’ve seen so far is just scratching the surface of what you can do with
ksqlDB. More complex queries are possible, and several built-in functions exist to
learn about. But before we continue exploring the capabilities of ksqlDB, let’s take a
quick pause to discuss some of the possible conceptual types of queries. 

Listing 11.16 Updating the CREATE TABLE to specify a key format that supports a schema
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11.3 Persistent vs. push vs. pull queries
So far, we’ve built a streaming application that shows updates as the user_activity
stream continues receiving user input. Once a client executes the query, the results are
continually pushed to that client unless the query is specifically terminated. But there
could be a situation where you want to issue a single query to retrieve a specific result
instead of a constant stream of updates. Additionally, you may need a continuous query
that doesn’t serve a particular client but can be used by any client issuing a query, some-
thing more permanent. We’ll discuss how to implement both of these approaches next. 

 ksqlDB has three categories of query types. One of the types is a push (continuous
query), where the stream or table constantly executes against the incoming records. It
returns the results to the original client issuing the query. The activity_leaders
table you created in the previous section exemplifies a persistent query. 

 Push queries are an excellent choice for an asynchronous workflow; you issue a
command or request but don’t expect an answer immediately; it executes in the back-
ground, and the answer will come later. A concrete example of an asynchronous work-
flow is sending an email; you write your text and then send it, knowing you’ll get a
response at some point, but you don’t expect an immediate answer.

 For more of a synchronous, request–response workflow, ksqlDB offers a pull query.
An example of a synchronous type of workflow is when you have contractors at your
house, and they need your permission to remove a section of the wall. All work stops
until they receive an answer. You can issue a pull query against a stream or a table, and
there are some restrictions, which we’ll get into in a moment.

 So the question is, which one should you use? To answer that question, let’s com-
pare all three query types (persistent, push, and pull) against each other (figure 11.1).

CREATE STREAM DATA_CRUNCHING AS
SELECT field_1, field_2,...

FROM
MY_DATA_STREAM

CREATE STREAM MY_DATA_STREAM
WITH(kafka_topic='data_topic',

value_format='PROTOBUF'
);

ksqlDB server Kafka topic

Persistent queries
create a new stream or
table from an existing
one and perform some
form of analysis.

Original stream

Derived stream
that does
some heavy
processing

Query results are
continually stored in a topic.

Figure 11.1 Persistent queries run on the server and persist results to a topic.



334 CHAPTER 11 ksqlDB
A persistent query runs on the server; it stores the results of the query in a Kafka topic,
so the results persist for the duration of the topic’s configured retention time. Also,
once you have a persistent query running, you can easily share the outcome because
any Kafka consumer client can read the records from the topic. You can think of a
continuous query as the workhorse or backbone, and it carries the full load of per-
forming the analysis of your streaming application. You can use the full range of
ksqlDB SQL syntax with a persistent query. Persistent queries take the form of CREATE
TABLE|STREAM AS SELECT...

 A push query, on the other hand, does not persist its results to a topic. A push
query returns its results to the client issuing the query. But the results are continually
pushed to the client. You can think of a push query as a subscription for changes to
the persistent query (figure 11.2).

A push query against activity_leaders could look like the following listing.

SELECT
    last_name, activity, total_steps
FROM activity_leaders
EMIT CHANGES;

With this query, you will receive updates for each user as they update their activity. But
these changes aren’t stored anywhere. The results of this query return to the original

Listing 11.18 Push query example on an Activity Leaders table

CREATE STREAM DATA_CRUNCHING AS
SELECT field_1, field_2,...

FROM
MY_DATA_STREAM

ksqlDB server

The persistent query is still
storing results in a topic.

Query results are continually
"pushed" to the client. SELECT calculation_1,

customer_count,
explanation

FROM
DATA_CRUNCHING

EMIT CHANGES;

Query submitted by client

Figure 11.2 Push queries don’t store results but return them to the client that submitted the query.
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client executing the query, whether it’s from the ksqlDB CLI, the REST API, or the
available ksqlDB Java client. We’ll cover the client options available for ksqlDB later in
this chapter. This query returns all updates to the table, but you could refine the
results further with a WHERE clause.

SELECT,
  last_name, activity, total_steps
FROM activity_leaders
WHERE total_steps > 1000
EMIT CHANGES;

Now, you’ll only receive updates where the total number of steps is more than 1,000. The
conditions in the WHERE clause can refer to any column the stream or table defines,
including the pseudo columns ROWTIME,ROWPARTITION, and ROWOFFSET defined by
ksqlDB. These columns are injected or attached to each row for an incoming record into
a Kafka topic backing a stream or table. Let’s take a moment to define each of these:

 ROWTIME—This is the timestamp associated with the Kafka record, which either
the producer or the broker sets, depending on your configuration.

 ROWPARTITION—The records’ partition it belonged to from the backing topic.
 ROWOFFSET—Each record in a Kafka topic has an offset, representing its logical

position.

When would you use any of these pseudo-columns in a query? Sometimes, you may
find it helpful to filter results by external factors about a record. For example, you
may only want to view events within a given timeframe. Even if the record doesn’t
define a timestamp as one of its columns, you can still filter results by the values in the
ROWTIME for each one.

 You could specify more conditions to refine the results. I won’t enumerate them all
here, but I’m sure you understand what you do. At this point, you should be able to
see the relationship between persistent and push queries. The persistent query carries
the entire load and allows you to issue a push query to receive a subset of the informa-
tion you’re interested in. Since the push query doesn’t persist its results, it makes
sense to use push queries as an alerting source until reaching a given state.

 Then, once getting to that state—say, where you observe a given user reaching
10,000 steps—you can terminate your query. You can place a hard cap on the number
of results using the LIMIT clause. For example, you are testing a query from the
ksqlDB CLI and only want to see whether it works appropriately and then exit. You
can change the push query in listing 11.19 to the following listing.

SELECT
  last_name, activity, total_steps
FROM activity_leaders

Listing 11.19 Push query with WHERE clause

Listing 11.20 Push query with a LIMIT
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WHERE total_steps > 1000
EMIT CHANGES
LIMIT 10;

Now, the query will terminate once it emits 10 result records. I should note at this
point that push queries can use the full range of SQL commands ksqlDB provides.
There are two main differences between persistent and push queries:

1 Push queries don’t persist results; they are emitted to the console or back to the
client executing the query.

2 Push queries aren’t shared. A persistent query evaluates against the incoming
records once and stores the results in a Kafka topic. But with push queries, if sep-
arate clients issue the same queries, ksqlDB evaluates each one independently,
even if they provide the same output (see figure 11.3).

Now, let’s move on to the final query type, the pull query. While persistent and push
queries constantly evaluate the incoming records, a pull query evaluates its statement
once and terminates afterward. However, the pull query does not persist in its results
in a topic like the push query. ksqlDB returns the outcome of the query to the client.
You can think of a pull query as reaching out and pulling down a result at a particular
time. A pull query is best when you need an immediate answer, like in a request–
response workflow.

CREATE STREAM DATA_CRUNCHING AS
SELECT field_1, field_2,...

FROM
MY_DATA_STREAM

ksqlDB server

The persistent query is still
storing results in a topic.

The query issued by the
client "pulls" the matching
records now, only one time.

SELECT calculation_1,
customer_count,
explanation

FROM
DATA_CRUNCHING

WHERE id = 5;

Query submitted by client

Figure 11.3 Pull queries return point-in-time results once; to get updates, you need to resubmit 
the query.
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 Pull queries only support a subset of the ksqlDB SQL statements. You can use a
pull query with any stream or any table created with CREATE TABLE as SELECT, but cur-
rently, not tables created directly against a backing topic. Additionally, pull queries
don’t support the use of JOIN, GROUP BY, PARTITION BY, and WINDOW clauses. 

 Out of the box, there are limitations to what you can do in a WHERE clause. The
restrictions in the WHERE clause are that you must use a key column, and the compari-
son needs to be against a literal value. For example, the following listing shows a pull
query against the activity_leaders table you created earlier.

SELECT last_name, activity, total_steps
FROM activity_leaders
WHERE key_1 = 'Smith'

Now you can execute a query against the activity_leaders table and get results
where the last name equals “Smith” and the query terminates. To get any additional
updates for this query, you’d have to execute it again.

NOTE There is a configuration you can set that allows for more liberal use of
the WHERE clause. If you set ksql.query.pull.table.scan.enabled to true in
either a CLI session or a ksqlDB server, it allows for several enhancements,
like using non-key columns or comparing them to other columns. See the
ksqlDB documentation for more information on table scans: http://mng
.bz/lVld. 

We’ve covered a lot of ground on the different query types available, so let’s wrap
things up with a table to compare each situation where persistent, push, and pull que-
ries are most effective. (table 11.1).

To summarize our table here, persistent queries take the form of CREATE STREAM|TABLE
AS SELECT.. EMIT CHANGES, and the query persists its results in a Kafka topic. Since

Listing 11.21 Example of a pull query WHERE clause with a key lookup

Table 11.1 Where to use persistent, push, and pull queries

Type Syntax Best use Running mode
Results stored 

in topic

Persistent CREATE [STREAM TABLE] 
AS SELECT.. EMIT 
CHANGES

Asynchronous 
response, heavy 
work on server

Continual 
updates

Yes

Push SELECT [items] FROM 
[STREAM TABLE]… EMIT 
CHANGES

Asynchronous 
response, more 
refined queries

Continual 
updates

No

Pull SELECT [items] FROM 
[STREAM Materialized 
TABLE]… WHERE

Evaluate query and 
terminate, point in 
time query

No updates must 
re-issue for addi-
tional results

No

http://mng.bz/lVld
http://mng.bz/lVld
http://mng.bz/lVld
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different clients can share the results in a topic, persistent queries are best suited for
doing heavy or more complex queries. Changes are continually emitted as new records
arrive in the stream or table.

 A push query starts with SELECT [items] FROM.. EMIT CHANGES, but the results do
not persist in a topic; they are returned continually to the client. A push query can use
the full range of SQL available in ksqlDB. Since the results do not persist, ksqlDB
always evaluates the same query from different clients. The push query is optimal for
subscribing to changes in a stream or table as in an event-driven architecture, but usu-
ally, the query is much simpler.

 Finally, the pull query retrieves a distinct result and terminates; there are no
updates as new records arrive. A pull query takes the form of SELECT [items] FROM..
The results do not persist and are returned to the issuing client. The best use of a pull
query is obtaining a single result in a request-response format. A pull query has limita-
tions on the SQL statements it can use, most notably in the WHERE clause.

 The general pattern then is to have persistent queries running on the ksqlDB
server and use a combination of push and pull queries to extract a subset of informa-
tion from them in your applications. We’ve concluded our coverage on query types,
but before we go on, let’s formalize how you can create a stream or table with the dif-
ferent query types. 

11.4 Creating Streams and Tables
So far, we’ve established that you can create streams and tables in ksqlDB, but we’ve
done it without categorizing the different ways you can do so. But we’ll take care of
that in this section. This will also be an excellent time to discuss integrating with
Schema Registry because when you define a stream or table where the backing topic
has a schema, defining the columns in the create statement is optional. ksqlDB will
infer the names and types based on the schema. We’ll discuss creating streams and
tables without schemas first and then move on to integration with Schema Registry
later in this section. 

 The first category of a stream or table you can create could be considered a “base”
stream or table. You generate these base streams or tables directly against a backing
Kafka topic. We’ve seen creating a base stream earlier with the user_activity stream,
but it’s repeated in the following listing. 

CREATE STREAM user_activity (first_name VARCHAR,
                             last_name VARCHAR,
                             activity VARCHAR,
                             event_time VARCHAR,
                             steps INT

     ) WITH (kafka_topic='user_activity',
            partitions=4,
            value_format='JSON',

Listing 11.22 Creating the user_activity stream
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            timestamp = 'event_time',
            timestamp_format = 'yyyy-MM-dd HH:mm:ss'
     );

This statement creates a stream with the backing topic of user_activity. If you recall,
a Kafka topic stores key-value pair records, but as defined here, this stream contains
only values. The keys for each record are null. Defining a key on a stream is optional
in ksqlDB; in this case, there are no keys for the user_activity topic. But what if a
topic does have keys? How would you change the CREATE STREAM statement here? Let’s
say the user_activity topic has populated keys—an integer representing the user ID;
you would update the create statement, as in the following listing. 

CREATE STREAM user_activity ( user_id INT KEY,     
                              first_name VARCHAR,
                              last_name VARCHAR,
                              activity VARCHAR,
                              event_time VARCHAR,
                              steps INT

     ) WITH (kafka_topic='user_activity',
            partitions4,
            key_format='KAFKA'    
            value_format='JSON',
            timestamp='event_time',
            timestamp_format='yyyy-MM-dd HH:mm:ss'
     );

So, for adding a key, the only change you needed to make was adding a column declar-
ing its type and adding the KEY reserved word telling ksqlDB this is the key of the key-
value pair. You also need to tell ksqlDB how the key is formatted, which you’ve done
by specifying the format of KAFKA, indicating it’s one of the basic types supported by
Kafka—for example, String, Long, and Integer. Just like we’ve seen with Kafka clients
and Kafka Streams, having a key will drive the partitioning for the incoming records,
and without a key, records are evenly distributed across partitions. 

 You can also create a table directly with a backing topic. Let’s take our user_
activity stream and make it a table named user_activity_table.

CREATE TABLE user_activity_table (user_id INT PRIMARY KEY,   
                                 first_name VARCHAR,
                                 last_name VARCHAR,
                                 activity VARCHAR,
                                 event_time VARCHAR,
                                 steps INT

     ) WITH (kafka_topic='user_activity',
            partitions4,

Listing 11.23 Creating the user_activity stream

Listing 11.24 Creating the user_activity_table table

Declaring the key 
for the stream

Specifying the data 
format of the key

Declares the 
primary key 
for the table
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            key_format='KAFKA'      
            value_format='JSON',
            timestamp='event_time',
            timestamp_format='yyyy-MM-dd HH:mm:ss'
     );

Creating a table is similar to creating a stream but with one significant difference.
While the KEY column on the stream is optional, it’s necessary for a table. You speci-
fied the key format, which follows the same rules as the key format specification of the
previous stream. Key format values can also be AVRO, PROTOBUF, and JSON_SR (for
JSON Schema), but for our purposes, as we’ve done throughout the book, the exam-
ples you’ll use will only use keys of type KAFKA. 

 There are also several differences between a stream and a table with the semantics
of keys and values. In a stream, we’ve established a valid record can have a null key,
but a table will drop any incoming record with a null key. Another difference we’ve
covered before is that records with the same key don’t affect each other in a stream.
They remain independent of each other.

 However, in a table, just like in a relational database table, you can only have one
primary key, so an incoming record with the same key as a previous record will be an
update replacing it. There’s also a difference in semantics with null values between a
stream and a table. A null value in a stream holds no special meaning, but a null
value in a table is considered a tombstone. The significance of a tombstone record
marks that row for deletion from the table and its backing topic. Let’s summarize
these differences in table 11.2 for quick reference. 

As a side note, it’s essential to understand that a row with a null value does not get
immediately deleted. Instead, it’s marked for deletion. Under the covers, a table uses
a backing topic that is a compacted topic, and only when the log cleaner runs will the
record get removed. The log cleaner runs at regular intervals as configured. 

 When you create either a stream or table with a CREATE statement directly against a
Kafka topic, you don’t directly query them. These streams and tables are how you bring
a Kafka topic into ksqlDB. It’s the subsequent streams and tables you create by selecting
from these base streams and tables that provide results either returned to a client in the

Table 11.2 Stream vs. table

Stream Table

Key optional Key required; otherwise, the record is dropped.

Keys don’t have to be unique; records with the 
same key aren’t related.

Keys must be unique; records with the same key are 
updates.

null values have no effect or meaning. null values are tombstones, marking the row for 
deletion from the table.

Type KEY Type PRIMARY KEY

Defines the format 
of the key
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case of push or pull queries (remember, push queries run indefinitely until terminated,
and pull queries evaluate once and end) or persisting their results to a topic. 

 To summarize, you have three basic types of streams and tables:

1 The base streams or tables that expose a topic to ksqlDB for further queries
2 Persistent queries that publish results to a Kafka topic
3 Push and pull queries that you can run against either the base stream or table

or persistent queries

Now that we’ve wrapped up our coverage on query types, let’s move on to the formats
of keys and values and Schema Registry integration. 

11.5 Schema Registry integration
Schema Registry integrates relatively seamlessly with ksqlDB, and it offers a sizable
advantage when defining a stream or a table where there is a schema. Since the schema
contains the field names and the types, you can omit the column definitions when you
create a stream or table. For example, let’s take another look at the user_activity_
table definition and assume the value used Protobuf. 

CREATE TABLE user_activity_table (user_id INT PRIMARY KEY   

     ) WITH (kafka_topic='user_activity_proto',
            partitions4,
            key_format='KAFKA'       
            value_format='PROTOBUF',   
            timestamp='event_time',
            timestamp_format='yyyy-MM-dd HH:mm:ss'
     );

We still need to provide the primary key definition since it’s a basic KAFKA type, but for
the columns, we omit the definitions, and ksqlDB infers the names and types from the
schema. A situation like this, where you use a KAFKA type and a type supported by
Schema Registry, is known as partial schema reference. If the key were also of type
Protobuf, you could simplify the table definition further. 

CREATE TABLE user_activity_table
     WITH (kafka_topic='user_activity_proto',
           partitions4,
           key_format='PROTOBUF'           
           value_format='PROTOBUF',            
           timestamp='event_time',
           timestamp_format='yyyy-MM-dd HH:mm:ss'
     );

I’m only showing the updated table definition for the user_activity_table because
the user_activity stream would have identical changes for creating the stream with

Listing 11.25 user_activity_table with Schema Registry: Protobuf schema

Listing 11.26 user_activity_table and  Protobuf schema for key and value

Defines the 
Primary Key

Specifies the key format

Specifies the 
value format

Specifies the 
key format

Specifies the 
value format
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schema-enabled values or keys. There is an exception to this rule of omitting column
definitions with schemas, which happens when you only want to use a subset of the
columns. For example, let’s revisit the user_activity_table, but now let’s say you
only want to use three columns: last_name, activity, and steps. Now, the table defi-
nition would look like the following listing. 

CREATE TABLE user_activity_table (user_id INT PRIMARY KEY,   
                                 last_name VARCHAR,   
                                 activity VARCHAR,
                                 steps INT

     ) WITH (kafka_topic='user_activity_proto',
            partitions4,
            key_format='KAFKA',
            value_format='PROTOBUF'
     );

So here, even though the value is in Protobuf format, we need to declare the names
and types of columns since we’re only selecting a subset of them. Although the infer-
encing done by ksqlDB reduces the amount of writing you need to do for a stream or
table definition, it reduces the clarity as now you’ll have to either issue a DESCRIBE
statement or view the physical schema to understand the column names and types. 

 I have two final points to consider in our Schema Registry section: when ksqlDB
infers data types and writes a schema and the conversion of data types.

 When you create a persistent query—for recall, that means using the syntax of
CREATE STREAM AS SELECT…—it will inherit the key and value format of the base stream
or table (figure 11.4). Remember, persistent queries store their results in a topic with
the name of the stream or table.

 This means if the value is in Protobuf format, ksqlDB will register a new schema with
Schema Registry using a subject of the stream or table followed by value. For example,
let’s revisit the user_activity stream, but this time, we’ll say the value is Protobuf. 

CREATE STREAM user_activity (first_name VARCHAR,
                             last_name VARCHAR,
                             activity VARCHAR,
                             event_time VARCHAR,
                             steps INT

     ) WITH (kafka_topic='user_activity',
            partitions=4,
            value_format='PROTOBUF',
            timestamp = 'event_time',
            timestamp_format = 'yyyy-MM-dd HH:mm:ss'
     );

Listing 11.27 user_activity_table and a subset of columns

Listing 11.28 The user_activity stream in Protobuf

Defines the 
key column

Specifies the 
value columns
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Even though we don’t have to have the column definitions, we’ll have them there, as it
should help clarify the example. Let’s say you want a persistent query to count the
number of activities by the user’s last name. You’d end up with a persistent query look-
ing like the following listing.

CREATE TABLE activity_count AS
  SELECT
    last_name,
    COUNT(activity) AS ACTIVITY_COUNT
  FROM user_activity
  GROUP BY last_name
 EMIT CHANGES;

From creating this table, ksqlDB registers a schema named activity_count-value; its
format is Protobuf since the source stream is in that format. But let’s now say that the
materialized topic from the query needs to be in JSON format, as some downstream cli-
ents can’t support another data format, as shown in figure 11.5. 

 That’s not a problem for ksqlDB, as you can seamlessly change the data format
from the underlying persistent query by overriding the value data format, as in the fol-
lowing listing.

 
 

Listing 11.29 Persistent query inheriting value format

ksqlDB server

CREATE STREAM user_activity (
first_name VARCHAR,
. . .

) WITH (kafka_topic='user_activity',
value_format='PROTOBUF'

);

Original query

CREATE TABLE activity_count AS
SELECT
last_name,
COUNT(activity) AS ACTIVITY_COUNT
FROM user_activity

GROUP BY last_name

Schema Registry

The table inherits the Protobuf type for
the values because that's what the base
query has.

Registers Schema activity_count-value
in Protobuf format with Schema Registry once.

activity_count topic

Figure 11.4 When creating a new query from a persistent one, it will inherit the data format by default.
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CREATE TABLE activity_count WITH (value_format = 'JSON') AS
  SELECT
    last_name,
    COUNT(activity) AS ACTIVITY_COUNT
  FROM user_activity
  GROUP BY last_name
 EMIT CHANGES;

The resulting topic, activity_count, will contain records with values in JSON. You
can use this ability to transform the record format in ksqlDB with source streams/
tables and persistent queries. Since push and pull queries output their results
directly to the client in a deserialized form, there’s no option or need to convert the
resulting format. 

 As we conclude this chapter, I’d like to give a final example of converting the seri-
alization format. Let’s say you have a stream of IoT data in Avro format, and you need
to have all records in the stream converted to Protobuf to support more downstream
clients. The following lists shows the stream you have in AVRO.

CREATE STREAM IoT_TEMP_AVRO (device_id INT KEY, temp DOUBLE)
 WITH (kafka_topic = "iot_temp", value_format 'AVRO');

You want to create an identical stream but in Protobuf format. To do this, you can cre-
ate a new stream by selecting everything from the IoT_TEMP_AVRO stream, as in the fol-
lowing listing. 

Listing 11.30 Overriding the value format of a source stream

Listing 11.31 Stream defined in AVRO

ksqlDB server

CREATE STREAM user_activity (
first_name VARCHAR,
. . .

) WITH (kafka_topic='user_activity',
value_format='PROTOBUF'

);

Original query

CREATE TABLE activity_count WITH (value_format = 'JSON') AS
SELECT
last_name,
COUNT(activity) AS ACTIVITY_COUNT
FROM user_activity

GROUP BY last_name

New query

Protobuf -> JSON

activity_count topic

Figure 11.5 ksqlDB can change the datatype on the fly when creating a new persistent query.
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CREATE STREAM IoT_TEMP_PROTOBUF WITH (value_format 'PROTOBUF') AS
    SELECT * FROM IoT_TEMP_AVRO;

So, you have created an identical stream in a different serialization format with a sin-
gle line of SQL! Now that we’ve covered the core of ksqlDB, let’s move on to more
advanced features, including joins and aggregations. 

11.6 ksqlDB advanced features
So far in this chapter, you’ve learned how to use ksqlDB to create streams and tables,
but usually, you’ll need to use more advanced features to solve complex problems.
Consider our scenario from a previous chapter where we have two streams of different
purchases, one for coffee bought at the internal store cafe and the other representing
all other purchases made in the store. To refresh your memory, we wanted to join pur-
chases made within 30 minutes of each other to create a promotion for the customer.
Let’s get started by first creating a stream for each category.

CREATE STREAM coffee_purchase_stream (custId VARCHAR KEY,
                                      drink VARCHAR,
                                      drinkSize VARCHAR,
                                      price DOUBLE,
                                      purchaseDate BIGINT)
     WITH (kafka_topic = 'coffee-purchase',
           partitions = 1,
           value_format = 'PROTOBUF',
           timestamp = 'purchaseDate'
     );

CREATE STREAM store_purchase_stream(custId VARCHAR KEY,
                                    credit_card VARCHAR,
                                    purchaseDate BIGINT,
                                    storeId VARCHAR,
                                    total DOUBLE)
     WITH (kafka_topic = 'store-purchase',
           partitions = 1,
           value_format = 'PROTOBUF',
           timestamp = 'purchaseDate'
     );

Now that you have your two streams, the next step is to set up the join itself. Before we
do that, let’s take a moment to discuss the requirements. Like in Kafka Streams, to
perform a join, both streams need to be co-partitioned, meaning that the underlying
topics must have the same number of partitions and are keyed the same (keys are the
same field and type). In our case, both topics have four partitions, and the key for both

Listing 11.32 Creating a new stream in a different serialization format

Listing 11.33 Creating ksqlDB streams for each purchase category
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streams is the customer ID, so they are all set for joining. Now let’s take a look at the
SQL for the join.

CREATE STREAM customer-rewards-stream AS
  SELECT c.custId AS customerId,          
       s.total as amount,             
       CASE                            
         WHEN s.total < 25.00 THEN 15
         WHEN s.total < 50.00 THEN 50
         ELSE 75
        END AS reward_points
  FROM coffee-purchase-stream c
    INNER JOIN store-purchase-stream s
    WITHIN 30 MINUTES GRACE PERIOD 2 MINUTES    
    ON c.custId = s.custId          

So you’ve selected one field from each stream, the customer ID, and the total amount
of the store purchase. To determine the amount of reward points, you use a CASE
statement, assigning different point levels depending on the total amount the cus-
tomer spent in the store. CASE statements are an elegant way of evaluating other con-
ditions based on the value of a field that’s part of the query.

NOTE For stream–stream joins in ksqlDB, other join types—LEFT OUTER,
RIGHT OUTER, and FULL OUTER—follow the same semantics you learned about
with KStream joins.

But you’re not limited to joining streams in ksqlDB. You can also perform stream–table
joins. When using a stream–table join in ksqlDB, only new records on the stream side
will trigger a result (just like Kafka Streams). So, typically, you’ll use a stream–table join
when you want to enrich the stream side by performing a lookup in the table.

 For example, consider the results of the stream–stream join you just implemented.
One of the columns you projected into the join was the customer ID, but you’d like
more complete information about the customer. To add additional information, join
the customer-rewards-stream with a fact table of members, which contains full
details of all the shoppers who participate in the rewards program.

 Let’s say you have a sink connector that is exporting all the records from a members
table into a Kafka topic named rewards-members, so the first thing you’ll need to do is
create a table in ksqlDB.

CREATE TABLE rewards_members (member_id VARCHAR PRIMARY KEY,
                              first_name VARCHAR,
                              last_name VARCHAR,
                              address VARCHAR,
                              year_joined INT)

Listing 11.34 Creating a stream-stream join for potential customer rewards

Listing 11.35 Creating a lookup table in ksqlDB from an existing topic

Selects the customer ID

Selects the total amount

Sets a CASE statement for 
determining reward points

Sets the join window 
of 30 minutes with a 
2-minute grace period

The join condition customer 
IDs are the same.
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     WITH (kafka_topic = 'rewards-members',
           partitions = 1,
           value_format = 'PROTOBUF'
    );

Now that you’ve created your table, you can set up a join with the customer-rewards-
stream. But in this case, not all customers are members of the rewards program, so
you’re going to set up a LEFT OUTER join, which will enable you to filter records later
on that don’t contain customer information.

CREATE STREAM enriched-rewards-stream   
   WITH (kafka_topic='customer-rewards-stream',     
          value_format='PROTOBUF') AS
   SELECT crs.custID as customer_id,              
          rm.first_name + ' ' + rm.last_name as name,
          rm.year_joined as member_since
          crs.amount as total_purchase,
          crs.reward_points as points
    FROM customer-rewards-stream crs
    LEFT OUTER JOIN rewards-members rm
              on crs.customerId = rm.member_id      

You’ve created an enriched stream by joining the rewards stream with a customer
information table. You’ve specified this as a LEFT OUTER JOIN, meaning you’ll still get a
join result if the customer-rewards-stream does not find a corresponding record in
the rewards-members table. Still, any of the fields representing the table will be null.

 This has been an example of a stream–table join, and ksqlDB also supports table–
table joins. What’s unique about table–table joins in ksqlDB is that it supports foreign
and primary key joins. You’ll need a foreign key join when the primary key of one
table matches a nonprimary key column on another table. For example, let’s take the
activity-count table you created earlier in the chapter and join it against the rewards-
members table from the stream–table join example. I’ll repeat the definition of both
tables here.

CREATE TABLE activity_count WITH (value_format = 'JSON') AS
  SELECT
    last_name,
    COUNT(activity) AS ACTIVITY_COUNT
  FROM user_activity
  GROUP BY last_name
 EMIT CHANGES;

CREATE TABLE rewards_members (member_id VARCHAR PRIMARY KEY,
                              first_name VARCHAR,
                              last_name VARCHAR,

Listing 11.36 LEFT OUTER JOIN to add customer information

Listing 11.37 Two tables for performing a foreign key join

The CREATE 
STREAM 
statement

Specifies the output topic 
name since we want the 
name to be different 
from the stream name

Selects fields from both 
the stream and table

The LEFT OUTER JOIN 
statement where the IDs from 
the stream and table match
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                              address VARCHAR,
                              year_joined INT)
     WITH (kafka_topic = 'rewards_members',
           partitions = 3,
           value_format = 'PROTOBUF'
);

Let’s say that the same retail store purchased your fitness app for which we built the
stream-stream and stream-table joins, and they’d like to award members of the
rewards club points for store use based on their participation in the fitness app. Since
you already have the reward-members table, you should be able to join it against the
activity-counts table.

 Now the activity-counts table has a primary key of last_name, and the rewards-
members primary key is the member’s ID, but it does have a last_name column so that
we can join on the rewards-members.last_name as a foreign key. Since we’re joining
on a column that’s part of the value, we won’t have the restrictions of co-partitioning.
This is because we are joining against a value, and there’s no way to deterministically
know which partition it belongs to since we put records on a partition by the key.

TIP If you need to change a key for a stream or table in ksqlDB, use SELECT
FROM and a partitionBy=<column> in the with clause to get the correct key.

So, let’s create the join between these two tables.

CREATE TABLE rewards-members-fitness-count AS
SELECT * FROM
activity_count ac JOIN rewards-members rm
   ON ac.last_name = rewards-members.last_name
EMIT CHANGES;

Without much effort, you’ve joined the activity_count table with members’ infor-
mation using a nonprimary key on another table.

 Before we conclude this chapter on ksqlDB, we should discuss one of its more pow-
erful features. We’ve discussed the different data formats ksqlDB supports: Avro, Pro-
tobuf, and JSON. So far, all the objects we’ve worked with have been flat, meaning
there is one top-level object, and all the fields we want to access are attributes of that
object. But what would you do when the data has nested structures? Consider the
JSON schema in the following listing.

"event_id": 1234,
  "school_event": {
       "type": "registration",
       "date": "2023-02-18",

Listing 11.38 Foreign key join between activity_count and rewards-members

Listing 11.39 JSON with nested structures
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       "student": {
             "first_name": "Rocky",
             "last_name": "Squirrel",
             "id": 1234567,
             "email": "rsquirl@gmail.com"

       },
       "class": {
             "name": "Geology-100",
             "room": "23RF",
             "professor": {
                  "first_name" : "Bullwinkle",
                  "last_name"  : "Moose"
                  "other_classes" : ["Geology-200", "Rocks-400", "Earth 

Minerals-304"]
                }

       }
  }

This is a deeply nested JSON structure. As you can see from the schema here, that
information is available, but how do we model and access it? Fortunately, ksqlDB
makes accessing nested data easy.

 To access nested data, ksqlDB uses a data type of a STRUCT, which maps string
(VARCHAR) keys to arbitrary values. When defining a stream, you will use a STRUCT to
describe the schema of the nested data. For example, using the JSON Schema, we just
looked at, you’d define a stream for it as shown in the following listing.

CREATE STREAM school_event_stream (
  event_id INT,
  event STRUCT<type VARCHAR,        
               date VARCHAR,
               student STRUCT<first_name VARCHAR,   
                              last_name VARCHAR,
                              id BIGINT,
                              email VARCHAR
                              >,
                class STRUCT<name VARCHAR,
                             room VARCHAR,
                             professor STRUCT<first_name VARCHAR,
                                              last_name VARCHAR,
                                              other_classes ARRAY<VARCHAR>
                                             >
                            >
                >
)
WITH (kafka_topic='school_events',
      partitions=1,
     value_format='JSON'
)

Listing 11.40 Using the STRUCT datatype to represent nested data
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As seen from this code listing, you define a nested object each time in the same man-
ner you would for any column. First, you provide the name followed by the type,
which is STRUCT< followed by the names and types of the fields on the object. When
you reach the last field for the object, you will close it with a > character. You repeat
this process each time you encounter an object in the schema.

 To query the nested fields, you provide the name of the outermost key and use a ->
to dereference from the object, again repeating as necessary. To see this in action, let’s
say you want to write a query that would make course suggestions for each given stu-
dent based on the other courses taught by a professor of a class the student is cur-
rently attending. You’d write a query such as in the following listing.

SELECT
       event->student->id as student_id,
       event->student->email as student_email,
       event->class->professor->other_classes as suggested
FROM
   school_event_stream

EMIT CHANGES

To access the nested data, you use the name→ pattern until you get to the fields you’d
like to retrieve in your query. You can follow the same design to access individual
elements of an array or map. For example, let’s say you only want to offer one sug-
gestion. So, access the first entry of other_classes and update the query to the fol-
lowing listing.

SELECT
       event->student->id as student_id,
       event->student->email as student_email,
       event->class->professor->other_classes[1] as suggested
FROM
   school_event_stream

EMIT CHANGES

Now, your query will only offer one suggested course to take.

TIP To access individual elements from a nested Map, you’d use name->map_
name['key'], and if the map entry was another STRUCT, you could drill down
using the same dereferencing syntax.

The book’s source code contains SQL files, the required docker compose files, and
instructions for running examples shown in this chapter, found in streams/src/main/
java/bbejeck/chapter_11.

Listing 11.41 Query on nested data for course recommendations

Listing 11.42 Query nested data and access a specific array entry
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Summary
 ksqlDB is an event streaming database where you can build event streaming

applications using the familiar syntax of SQL. The queries you write will contin-
ually evaluate events coming into a Kafka topic and may persist the results to a
topic or return them directly to a client application.

 You can create a STREAM or a TABLE in ksqlDB, and they have the same semantics
as the corresponding streams and tables in Kafka Streams. A STREAM is an
unbounded stream of independent events, and the TABLE is an update stream
where event key-value pairs with the same key are an update to a previous one
with the same key.

 There are different query types in ksqlDB—source queries where you create a
STREAM or TABLE with a backing Kafka topic and persistent queries that select
some or all of the columns from a source query and persist their results to a Kafka
topic. Persistent query results can be shared with multiple clients. A push query
selects a subset of columns from a persistent query, but the results are streamed
directly to the client. Push queries will run indefinitely until the client terminates
the connections. Pull query results aren’t shared; ksqlDB will execute identical
queries from different clients. A pull query executes once and terminates. A pull
query has some limitations on the SQL statements it supports.

 ksqlDB seamlessly supports Schema Registry serialization formats. Streams and
tables inherit their backing topics’ key and value format or source streams and
tables. You can easily change the format of a stream or table by using a WITH
clause and providing a different key and/or value format. ksqlDB automatically
registers a schema when creating a stream or table based on a persistent query.
You don’t have to declare the column names and types in the definition when
defining a stream or table and using Avro, Protobuf, or JSON Schema format
for your events.

 ksqlDB offers rich library aggregation functions like COUNT, SUM, and AVE out of
the box.

 You can create new streams using stream-stream joins or enrich a stream with a
stream–table join. Stream–stream and stream–table joins require that both sides
are co-partitioned (same key type and number of partitions). You can also per-
form table–table joins with primary keys, but you can also perform foreign key
joins for cases where you want to join on a field in the value of one of the tables.

 You can query arbitrarily nested data using the STRUCT datatype to model a
stream or table schema and then use the -> operator to dereference objects
and drill down to the desired field. 



Spring Kafka
In this chapter, you will learn about using another open source library, Spring, to
build Kafka and Kafka Streams applications. But before we get into that, let’s give
some quick background on what Spring is and why you’ll use it. Spring originates
as an IoC (inversion of control) container developed initially by Rod Johnson. 

 The inversion of control principle means that the main program or application
does not control where its dependencies are coming from. If you are familiar with
Spring, you can skip this introduction and go directly to the next section, where we
use Spring Kafka to build a Kafka producer and consumer application. 

12.1 Introducing Spring
A non-IoC application, say a payment processing system, would directly instantiate
all of the collaborating components in the application. Essentially, it’s in control of

This chapter covers
 Learning about Spring and when to use it 

with Kafka

 Understanding dependency injection

 Using Spring Kafka for building Kafka applications

 Building Kafka Streams applications with Spring
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the other parts used. This control includes being aware of the concrete types of the
components vs. the interface. However, with IoC, the main application only has refer-
ences to the interface types of the collaborators, and instead of directly instantiating
them, the container injects them into the application. This process makes for more
flexible and testable applications, as you can change the implementation as needed.
Testing is more straightforward since you inject interfaces and can supply mock
instances into the application. 

 Dependency injection is one way of achieving IoC. An external mechanism injects
dependencies via constructors, setter methods, or directly at the field level. That’s
what Spring provides: a mechanism for wiring up applications where each component
only uses interfaces. Spring has grown into a sizeable thriving project, providing much
more than an IoC container.

 As for why you’d want to use Spring, let’s look at a concrete example of a payment
system mentioned before. Without a doubt, your payment application will require a
network connection to receive and send payment information. Additionally, you’ll
want to use something other than raw network sockets for this network communica-
tion. Instead, you’ll wish to wrap it up in a software component so that your payment
processor doesn’t need to know the details of connecting to the network and commu-
nicating with it. So, a basic skeleton of your payment processor class could look like
the following listing.

public class PaymentProcessor implements Processor {   

  private NetworkClient networkClient;      

  public PaymentProcessor(NetworkClient networkClient) {
     this.networkClient = networkClient;   
  }

  public void handlePayment() {
     payment = networkClient.receive();       
     // do some work
     networkClient.send(processedPayment);    
   }

}

From looking at the PaymentProcessor class, you see that it depends on the Network-
Client to complete its job. But notice that the code knows nothing of the Network-
Client other than the exposed methods on the interface. This lack of knowledge is
very beneficial, as you don’t want the PaymentProcessor to have any knowledge
beyond the contract specified by the interface. Why is this important? As time goes on
with your project, you’ll make changes, and it might include changing the implemen-
tation of the NetworkClient, but from how you’ve written the code here, that won’t

Listing 12.1 PaymentProcessor class

PaymentProcessor 
class

The PaymentProcessor 
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NetworkClient instance 
via the constructor
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to get work done
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matter. The PaymentProcessor only needs something that implements the expected
interface. Otherwise, you’d have to find all uses of the specific implementation and
update the usage. 

 By following this approach, you reap an additional benefit when testing. Ideally,
you only want to validate the logic of the PaymentProcessor in a test, and you don’t
need a real network connection to do that. So you can inject a “mock” NetworkClient
that implements the interface but doesn’t connect to the internet. It will simply pro-
vide the canned information you’ve provided. In chapter 14, we’ll go into more detail
about mocks and different testing approaches.

 So now, you can see the benefit of using a dependency injection approach to com-
posing software applications. Still, the question remains: How do I inject the different
required classes? Enter the Spring container. Spring provides different annotations
that you use to “annotate” the various relationships between types have with each
other. Let’s take a look at an example.

@Component                                        
public class PaymentProcessor implements Processor {

  private NetworkClient networkClient;

  @Autowired                                       
  public PaymentProcessor(NetworkClient networkClient) {
     this.networkClient = networkClient;
  }
 ...
}

...

@Component                                                   
public class SecureNetworkClient implements NetworkClient {

  public SecureNetworkClient(...) {
    ...
  }

 ....
}

By providing these annotations when you start the application, Spring will scan all the
classes and wire up the dependencies based on their annotations. So, Spring takes
care of putting all the pieces together for you.

 This concludes our brief introduction to the Spring framework. The following sec-
tion will dive into using Spring to create Kafka-enabled applications.

Listing 12.2 Annotations on classes specifying the relationship between them
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12.2 Using Spring to build Kafka-enabled applications
When building Kafka applications with Spring, you have two choices: you can use
standard Spring, which requires more configuration, or you can use Spring Boot.
Spring Boot is an extension of the Spring framework. It provides a more opinion-
ated approach by following a convention over the configuration approach. Spring
Boot handles many of the details required to use Kafka with Spring. While using
either approach is fine, I will only cover using Spring Boot as it makes creating an
application more effortless and provides excellent default options like a built-in
web server. 

 Let’s say you work for a startup specializing in online loan applications for mort-
gages, car, and business loans. The company, called Dime, offers substantially lower
interest rates and plans to become profitable by having a large volume of loans to
compensate for the reduced interest income. The goal is to provide quick turnaround
on loan applications by automating the loan application process as much as possible
(figure 12.1).

 Your application forwards loan applications completed on the company website to
a Kafka topic, and a sophisticated underwriting application will process the loans. The
underwriting application sends the results to three potential topics, one each for
accepted applications, rejected applications, and a quality assurance department that
will audit loans selected at random to ensure the rigor of the loan process. Let’s look
at how you configure a Spring Boot application using Kafka.

@Configuration                                   
public class LoanApplicationProcessingApplication {

...
}

Additional resources
Spring Kafka is very comprehensive, so I won’t cover all the details of Spring, just
what you need to start using it with Kafka and Kafka Streams. For more complete
coverage of Spring, I would suggest starting with the following titles from Manning
Publications:

1 Spring in Action, by Craig Walls
2 Spring Boot in Practice, by Somnath Musib
3 Spring Security in Action, by Laurenţiu Spilcă
4 Java Persistence with Spring Data and Hibernate, by Cătălin Tudose

You can also consult Spring’s excellent documentation at http://mng.bz/yZld.

Listing 12.3 Class declaration for configuration class with Spring Boot
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this as a configuration class for the

Spring container
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Looking at the class-level annotation, you’re specifying this class as the configura-
tion for your application, and Spring Boot looks in the src/main/resources direc-
tory for a file named application.properties. The application.properties file
contains all values for any fields with the @Value annotation. Note that if you give
the file a different name or place it in a different location, you’ll need to tell Spring
where to find it. 

@Configuration
public class LoanApplicationProcessingApplication {
    @Value("${application.group}")
    private String groupId;

    @Value("${loan.app.input.topic}")        
    private String loanAppInputTopic;

    // Other configurations left out for clarity

   @Bean
   public NewTopic loanAppInputTopic() {        
        return new NewTopic(loanAppInputTopic,
                            partitions,
                            replicationFactor);
   }

   // Other NewTopic beans left out for clarity

Listing 12.4 Basic configuration, which is substantially less with Spring Boot

Loan applications
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Figure 12.1 Online loan application process
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Other than some additional fields for injected property values and NewTopic beans for
creating the required topics, this is all there is to the configuration class for the Spring
Boot application! As you can see, Spring Boot removes most of the infrastructure con-
figuration required for a Spring Kafka application. This simplification is only some-
times the case, as we’ll see later in the chapter when we change the application
requirements. But for the issues where you need the Kafka infrastructure classes as
they come straight out of the box, using Spring Boot is a faster path for development.

 Before we look into the specific Spring Kafka components, let’s look at how you’d
start the Spring Boot application.

@SpringBootApplication(scanBasePackages =
➥ "bbejeck.spring.application")                    
public class LoanApplicationProcessingApplication {

public static void main(String[] args) {

 SpringApplicationBuilder applicationBuilder =
  new SpringApplicationBuilder(
    LoanApplicationProcessingApplication.class)   
      .web(WebApplicationType.NONE);        
  applicationBuilder.run(args);   

 }
}

To create a Spring Boot application, you add a @SpringBootApplication annotation
at the top of the class with the main method for starting it. We also provide the base
packages containing the different components we want the Spring context to pick up
and include. 

 You see the SpringApplicationBuilder class, which we use for building the
application; this also creates an ApplicationContext, which is the primary interface
for configuring the different components specified for the Spring Container. .web(Web-
ApplicationType.NONE); establishes that you don’t want a web application started. 

 By default, Spring Boot starts a web server (Apache Tomcat is the default), but we
won’t need it for our purposes here, so we set the type to NONE. Later in the chapter,
you’ll build another Spring Boot application where you’ll need the embedded web
server. You start the application in listing 12.5 by executing the SpringApplication-
Builder.run method. 

TIP You can also have a Spring Boot skeleton application generated for you
by going to https://start.spring.io/.

So far, we’ve covered how to configure a Spring-Kafka application and how you would
start it. What’s next for us to go over is the different components of the application

Listing 12.5 Main class for starting a Spring Boot application
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and how it all ties together. We won’t focus too much on the application’s business
logic, as that’s unimportant here; you’ll add that to the applications you develop.

12.2.1 Spring Kafka application components

There are two main components for your loan processing application: one is to
receive the application information and apply the approval algorithm to each incom-
ing record, which contains all the data to process it. Once this first processor uses the
algorithm for a given application, meaning it’s either approved or not, the result gets
produced to a Kafka topic—one for approvals, another for rejections, and a third
topic for quality assurance. A certain number of processed loan applications are cho-
sen randomly for review (by a human!) to ensure the algorithm performs as expected. 

 With that background in mind, let’s take a look at the NewLoanApplication-
Processor starting with the class declaration and constructor first. 

@Component                                 
public class NewLoanApplicationProcessor {

  @Value("${accepted.loans.topic}")        
  private String acceptedLoansTopic;

  @Value("${rejected.loans.topic}")
  private String rejectedLoansTopic;

  @Value("${qa.application.topic}")
  private String qaLoansTopic;

  private final KafkaTemplate<String, LoanApplication>
  ➥ kafkaTemplate;                                

  @Autowired                              
  public NewLoanApplicationProcessor(
           KafkaTemplate<String, LoanApplication> kafkaTemplate) {
      this.kafkaTemplate = kafkaTemplate;
  }

At the top, where you declare the class name, there is a @Component annotation. When
starting the application, the Spring container scans for any classes with this annota-
tion and includes them in the application context. Having a @Component at the top
allows for dependencies to be injected into it or for Spring to use it as a dependency
where other classes reference it. 

 Next, you see the injection of properties for the variables containing the names of
the different output topics, and this should look familiar to you as you saw the same
thing in the configuration class. Finally, take a look at the last lines of listing 12.6.
private final KafkaTemplate<String, LoanApplication> kafkaTemplate; is the vari-
able declared for a KafkaTemplate instance, and we’ve decorated the constructor with
an @Autowired annotation, which instructs the Spring container we want to provide

Listing 12.6 NewLoanApplicationProcessor declaration and constructor
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any of the parameters found there. In our case, we’ll get the KafkaTemplate created at
container startup. 

NOTE You can also have autowired dependencies at the field level.

Now let’s take a look at where the “rubber meets the road,” so to speak, in the method
where you handle the loan application processing (some details are omitted for clarity).

@KafkaListener(topics = "${loan.app.input.topic}",  
              groupId = "${application.group}")         
public void doProcessLoanApplication(LoanApplication loanApplication) {

  boolean loanApproved = debtRatio <= 0.33 &&
    loanApplication.getCreditRating() > 650;
  String topicToSend = loanApproved ? acceptedLoansTopic :
    rejectedLoansTopic;                                   

  LoanApplication processedLoan = LoanApplication.Builder.newBuilder(
    loanApplication).withApproved(loanApproved).build();
  kafkaTemplate.send(topicToSend, processedLoan.getCustomerId(),
    processedLoan);                                                
  if (random.nextInt(100) > 75) {
      kafkaTemplate.send(qaLoansTopic, processedLoan.getCustomerId(),
       processedLoan);   
  }
}

By placing the @KafkaListener annotation at the top of this method, the Spring con-
tainer uses the ConcurrentKafkaListenerContainerFactor to create a KafkaListener
instance that wraps a KafkaConsumer that will consume records from the topic(s)
specified in the @KafkaListener declaration. We’ll explore the relationship between
listeners, consumers, and topics soon, but let’s continue for the moment by specifying
the listener itself. 

 @KafkaListener(topics = "${loan.app.input.topic}" specifies the topic name
for the listener, which, under the covers, a KafkaConsumer subscribes to. You’re setting
the consumer group ID for the underlying consumer with groupId = "${applica-
tion.group}"). For both attributes, you’ll notice you’re not supplying hard-coded val-
ues, but instead, you’re utilizing property replacements, which again gives you more
flexible code. Should the topic(s) or group ID need to change, you only need to
update the properties file versus changing and recompiling your code.

 You also see here the idea of a message-driven POJO (Plain Old Java Object);
there’s nothing specific to Kafka about this class. But by applying one line of code,
you’ve taken a simple Java class and converted it into one that can handle receiving
messages from a Kafka broker.

Listing 12.7 Loan processing handling in the method
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 After you’ve processed the loan application (I’ve intentionally left the code out
here as it’s not important to learning how to use Spring), you configure the destina-
tion topic for the loan based on its approval status. Then, you use KafkaTemplate to
return the processed loan application record to a Kafka topic.

 Here, you’ll notice some of the conveniences KafkaTemplate provides. You’re only
providing a topic name, key, and value. If you recall from chapter 4 on Kafka clients,
when sending a record with the KafkaProducer, you first need to create a Producer-
Record instance to send to Kafka. The KafkaTemplate#send method returns a
ListenableFuture<SendResult<K, V>> object, and to get the result of the send, you’d
need to wait for the future to complete by executing the ListenableFuture#get
method, but that would block the application until the get method returned a result.
You can provide the ListenableFuture a callback that will process the result of the
send asynchronously. 

 In our example, you’re not capturing the returned ListenableFuture, but we will
revisit how you use the KafkaTemplate and update the loan processing application. But
before we do that, we have one more process to consider: the post-loan processing.

@Component                                        
public class CompletedLoanApplicationProcessor {

@KafkaListener(topics = "${accepted.loans.topic}",                
              groupId = "${accepted.group}")
public void handleAcceptedLoans(LoanApplication acceptedLoan) {
    ....
}

@KafkaListener(topics = "${rejected.loans.topic}",                
              groupId = "${rejected.group}")
public void handleRejectedLoans(LoanApplication rejectedLoan) {
   ....
}

@KafkaListener(topics = "${qa.application.topic}",                
               groupId = "${qa.group}")
public void handleQALoans(LoanApplication qaLoan) {
   ....
}

}

We won’t spend much time here as you’ve already learned about the @Component and
@KafkaListener annotations, but there is some additional information we’ll get into
about the @KafkaListener. I said before that the @KafkaListener annotation means
the Spring container creates KafkaListenerContainer for each annotation it encoun-
ters when starting the application. Even if you provide another method with @Kafka-
Listener (and a different group ID), it will create a separate listener container. 

Listing 12.8 Post-loan processing class
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 Since you have four methods decorated with @KafkaListener, there will be four
KafkaListenerContainer instances running for your application. Each listener con-
tainer will wrap one KafkaConsumer subscribed to the topic(s) specified in its declara-
tion. The consumer created by the container factory will consume from all topic
partitions. Before we move on to the next section, there’s one final subject to cover
with the @KafkaListener.

 You’ve placed the annotation at the method level in all the examples you’ve seen
so far. You can also set it at the class level, which involves some additional work. Let’s
look at a simple example.

@Component
@KafkaListener(topics = "${loan.app.input.topic}", groupId =
    "${application.group}")                                  
public class NewLoanApplicationProcessorListenerClassLevel {

  @KafkaHandler                                              
  public void doProcessLoanApplication(LoanApplication loanApplication) {
      // Handle the loan application
  }

  @KafkaHandler(isDefault = true)                 
  public void handleUnknownObject(Object unknown) {
     // Handle the unknown object
  }

As you can see here, setting the class as the KafkaListener is as simple as placing the
@KafkaListener at the class declaration along with the @Component annotation. You
must ensure that you have at least one method annotated with @KafkaHandler. We
added @KafkaHandler to the doProcessLoanApplication and another handleUnknown-
Object marked as the default method with the isDefault attribute. When using the
entire class as a KafkaListener, Spring determines the way to use it based on the
parameter type of its signature. 

 This selection process means that all @Handler methods must have a single param-
eter, and the different ones can’t have any ambiguity between their parameter types.
In this class level @KafkaListener example, we’ve added a handler for a Kafka record
that contains a value with a type other than the LoanApplication. However, it’s not
representative of the best use of KafkaListener at the class level; I include this here
for completeness. I’m going to assert that the canonical use of a listener at the class
level would be when you are consuming multiple types from a single topic. Consider
the following example. 

 
 

Listing 12.9 Class level KafkaListener requires method annotations
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@Component
@KafkaListener(topics = "${multi.topic.input}", groupId =
    "${multi.input.group}")                                  
public class NewLoanApplicationProcessorListenerClassLevel {

  @KafkaHandler                                          
  public void doSomethingWithLong(String someString) {
      // Do something with a String type
  }

  @KafkaHandler                              
  public void doSomething(Long longNumber) {
      // Do something with the Long object
  }

  @KafkaHandler                                  
  public void doSomething(Double doubleNumber) {
      // Do something with the double
  }

  @KafkaHandler(isDefault = true)                 
  public void handleUnknownObject(Object unknown) {
     // Handle the unknown object
  }

Each method has a distinct type for Spring to select for handling the records. So the
question is, when would you choose to place the @KafkaListener at the class level ver-
sus the method level? While there isn’t a hard and fast answer, I take the opinionated
approach that one should always favor using a listen at the method level. Topics
should represent a single event type and have an appropriate name that makes it easy
to reason why that topic exists. Of course, there are always exceptional situations that
you’ll need to account for, and if one of them is multiple types in a single topic, then
using a listener at the class level is one way to handle it. 

 So, that wraps up our coverage of building your first Spring–Kafka application. Still,
there’s more to cover, including more advanced functionality that should broadly apply
to you when creating an event stream application. A single consumer for all partitions
may be sufficient for single-partition topics or topics with low traffic levels. But what if we
want a faster way to consume (i.e., not on a single thread)? Additionally, what about get-
ting the key of the Kafka record and other metadata (timestamp, partition) or sending
records of different types? That’s what we’re going to cover next. 

12.2.2 Enhanced application requirements

Your online loan operation is running, and things are going well. But some changes
will make the application better. The changes you’ll need to make are as follows:

1 Add more partitions to the input topic.
2 With more partitions, parallelize the application so you have a consumer per

partition.

Listing 12.10 KafkaListener at the class level for consuming multiple types
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3 Capture the key and timestamp of the incoming record.
4 Track the offset and timestamp of records produced.

While that seems like quite a list, fortunately, the changes needed to accommodate
them are easily achievable. We’ll only focus on the changes you must make for the
Spring-Kafka application. I will assume changes like partition number and domain
objects you already know how to do (the updates will be in the source code for you to
examine).

 Let’s take on increasing the partition count and how you will increase the concur-
rency of your application to improve throughput. Chapter 4 covered the Kafka clients,
and we discussed the unit of parallelization of a Kafka topic: the partition. Generally
speaking, to increase the throughput of a Kafka application, you add more partitions
(or overpartition at the beginning with growth in mind) to assign a single consumer
for each partition. By using a dedicated consumer for each partition, you can maxi-
mize the application’s throughput (I’m generalizing here; of course, there are always
exceptions and different considerations that can occur).

 You’ve done some analysis and determined that the input topic for the loan appli-
cation should have three partitions for optimal throughput. This number considers
the current level of applications and the increase you expect soon. You’re also going
to increase the partitions of the post-processing topics but to a lesser degree by two
partitions each. The thought process behind the minor partition increase is that each
loan application will only exist in one of two states—approved or rejected—so with an
approval rating hovering at 50%, each path in the post-processing will only need to
accommodate half of the expected max loan application traffic.

 Earlier in the chapter, you saw that by using Spring Boot and the @EnableKafka
annotation, the Spring container automatically created a ConcurrentKafkaListener-
ContainerFactory for you. To refresh your memory, the listener container factory
creates a KafkaListenerContainer for each method decorated with @KafkaListener.
So if you increase the number of partitions in your input topic, as things stand now,
you’ll have a single consumer for all partitions, but you want to have a consumer for
each one. The good news is that while Spring Boot provides much functionality out of
the box, you’re always free to alter the configurations, which we’ll do now. 

 The first step is to create a Spring Bean for a ConcurrentKafkaListenerContainer-
Factory, but we’re going to set a specific property, concurrencyLevel.

@Bean
public ConcurrentKafkaListenerContainerFactory<String, LoanApplication>
                    kafkaListenerContainerFactory() {       
    ConcurrentKafkaListenerContainerFactory<String, LoanApplication>
           kafkaListenerContainerFactory =
            new ConcurrentKafkaListenerContainerFactory<>();
    kafkaListenerContainerFactory.setConsumerFactory(consumerFactory());

Listing 12.11 Increasing the concurrency level for a container listener factory

Creates a new
ConcurrentKafkaListenerContainerFactory
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    kafkaListenerContainerFactory.setConcurrency(partitions);   
    return kafkaListenerContainerFactory;
}

This configuration here is similar to the one you created in the non–Spring Boot
application earlier, with one distinct difference. We’ve used the setConcurrency
method, setting it to the number of configured partitions. The effect of putting the
concurrency level to the same number of partitions means you get a KafkaConsumer
per partition, which is what you’ll need for maximum throughput. 

 Another point to consider is that we’ve used the same name for the method as the
default expected by the container. Why is that? By using kafkaListenerContainer-
Factory for the method name (remember, without providing a name attribute, the
method name becomes the bean name), the Spring container will pick up your cus-
tom container factory instead of creating the default factory with the same name.
Using this “shadow” bean naming process, your processing class will automatically use
the updated container factory with no code changes, which keeps your code flexible
as it picks up and uses either container. 

 That’s not to say you should always use the same name when overriding a Spring
Boot default. You can give it any name you want when using a custom factory. You’ll
need to explicitly tell the KafkaListener which container factory to use by adding an
attribute, containerFactory to the @KafkaListener annotation. 

// In the configuration class
@Bean("custom-container")                
public ConcurrentKafkaListenerContainerFactory<K, V>
                                       customContainerFactory()

// In the @Component class
@KafkaListener(groupId = "${application.group}",
                containerFactory = "custom-container",   

This code is the alternative to providing a custom container. In the configuration
class, you create the customized container, and you supply a name to the @Bean anno-
tation, and in the @Component class, you use the same name for the containerFactory
attribute. 

NOTE To increase the concurrency of the ConcurrentKafkaListener-

ContainerFactory, you can also provide the configuration spring.kafka
.listener.concurrency and set it equal to the desired number. It could be
something like spring.kafka.listener.concurrency=${num.partitions},
assuming the num.partitions comes earlier in the application.properties
file. I’ve chosen to create a custom container factory to serve as an example of
providing an override to the defaults provided by Spring Boot. Another

Listing 12.12 Adding the custom container factor for the listener
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approach would be directly providing a concurrency attribute with the @Kafka-
Listener annotation. 

Now that you’ve achieved the desired consumer-per-partition ratio, there’s an addi-
tional consideration you’ll have to take into account: you now have a multithreaded
processing application.

 The Spring container creates a separate thread equal to the number you set for the
concurrency level. Creating new threads is expected and is essential for increased
throughput. But this means each thread will call the listener method concurrently. The
concurrent calls are acceptable if the method is thread safe (i.e., no shared mutable
state exists).

TIP It’s easy to find the threads associated with a particular Kafka listener by
adding an id attribute to the @KafkaListener annotation. Spring will use the
ID you provide as part of the thread name, making it easy to identify which
threads consume from different topics. 

In the example code, the application shares a single KafkaTemplate instance across all
threads, but since the underlying KafkaProducer is thread safe, the template is as well.
It’s good to keep the Kafka listener methods stateless; otherwise, you must add syn-
chronization to your code to ensure you get deterministic results.

NOTE I’m not going to cover Java threading or synchronization here, but a
quick Google search on the topic will yield plenty of resources for you to
explore the subject.

Before moving on, we have two more application improvements you need to imple-
ment from our previous list. The remaining requirements are as follows:

1 Capture and log the key and timestamp of the incoming loan application.
2 When producing the processed loan result, log the offset and timestamp of the

produced record. Also, if there’s an error producing the record, you won’t have
an offset and timestamp, so you’d like to log out the error as well.

To retrieve the key, timestamp, and other metadata associated with the incoming
Kafka record, you’ll apply @Header annotations to additional parameters to your lis-
tener method. So, the changes you’ll make to your loan processing class will look like
the following code listing.

public void doProcessLoanApplication(LoanApplication loanApplication,
          @Header(Kafka Headers.RECEIVED_TIMESTAMP)
➥ long timestamp,                                       
          @Header(Kafka Headers.RECEIVED_MESSAGE_KEY)
➥ String key)    

Listing 12.13 Getting the message key and timestamp from the incoming Kafka record

Extracts the 
original timestamp 
for the record

Gets the key for 
the Kafka record
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By adding the @Header annotation with the desired specific header, you can retrieve
the original timestamp and message key. Other header values, such as the topic, parti-
tion, and offset, are available. 

TIP When extracting header information for consumed records, use Kafka
Headers.RECEIVED_X. The KafkaHeaders class provides constants for both
producer and consumer records, and the ones for the consumer records start
with RECEIVED. 

Now that you’ve retrieved the message key and the timestamp of the incoming record,
your next task is to log the offset and timestamp of the produced record after loan process-
ing. Earlier in the chapter, we demonstrated that the loan application processing class,
NewLoanApplicationProcessor, after processing a loan, produces a record back to Kafka
with the approval status of the loan determining the topic. To refresh your memory, the
following listing shows the line of code responsible for producing the record.

kafkaTemplate.send(topicToSend, processedLoan.getCustomerId(),
    processedLoan);

We also mentioned that the KafkaTemplate.send method returns a Listenable-
Future<SendResult<K, V>>, and you could extract the timestamp and offset directly
at that point. But that is the drawback of needing to call the ListenableFuture.get
method, which will block your application’s main thread until the get method returns,
meaning waiting until the produce request is complete. Instead, you’d not take that
approach as that would affect performance. So what you can do in this case is supply
the returned ListenableFuture, a callback that will execute asynchronously when the
produce request is complete, whether it’s a success or failure. 

private final ListenableFutureCallback<SendResult<String, LoanApplication>>
           produceCallback = new ListenableFutureCallback<>() {   
  @Override
  public void onFailure(Throwable ex) {       
       LOGGER.error("Problem producing a record", ex);
  }

  @Override
  public void onSuccess(SendResult<String, LoanApplication> result) {   
      RecordMetadata metadata = result.getRecordMetadata();
       LOGGER.info("Produced a record to topic {} at offset{} at time {}",
               metadata.topic(), metadata.offset(), metadata.timestamp());
  }
};

Listing 12.14 Producing a processed loan

Listing 12.15 Callback for information after the produce request completes
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Now that you have your callback created, it’s simply a matter of adding it to the result-
ing CompletableFuture after executing a KafkaTemplate.send action. 

ListenableFuture<SendResult<String, LoanApplication>>
➥ produceResult =                                     
➥ kafkaTemplate.send(topicToSend,
                       processedLoan.getCustomerId(),
                       processedLoan);

produceResult.addCallback(produceCallback);   

Now, you’ll get notification of completed produce requests even in the case of a fail-
ure. This process is similar to what you saw in the chapter on Kafka clients. Still, when
working directly with a KafkaProducer, you add the callback now as a parameter to
the KafkaProducer.send method. 

 We’ve wrapped up our coverage of building a Kafka application using Spring
Kafka, and now we’ll move on to using Spring Kafka with Kafka Streams applications. 

12.3 Spring Kafka Streams
Just as we saw how Spring Kafka with Spring Boot could simplify building Kafka-based
applications, there is also support for building Kafka Streams applications. It’s differ-
ent since Kafka Streams already abstracts away a lot of the details of working with
Kafka. As with using any tool or framework, there are tradeoffs to consider. In this
case, I’m referring to simplified application development versus more control over
the application-building process. 

 When using Spring Boot with Kafka Streams, there are some advantages to dealing
with less infrastructure code. Still, there’s some loss of control over how to build the
application versus if you were to use Spring for its dependency injection capability
only. We’ll look at both approaches so you can decide which direction is best for you.
We’ll also cover one of the great features of using Spring Boot with Kafka Streams;
Spring Boot applications will, by default, launch a web server when you start them.

 Having a web server automatically with our Kafka Streams application is a real
advantage when using interactive queries (IQs). IQs enable you to query the results of
stateful operations in Kafka Streams directly. So, within your Spring–Kafka Streams
application, you can include web-based classes to handle incoming requests for serv-
ing up IQ queries. This has the potential to simplify your application architecture.
We’ll explain how that works later. 

 Let’s start with a simple Kafka Streams application, first using all the Spring Boot
utilities and then just using Spring to wire up the application. You’ve decided to redo
your Kafka loan application to use Kafka Streams. It will still use the same logic for
loan approval, but instead of using listeners and the KafkaTemplate, it’s all handled in
Kafka Streams. This will allow you to perform aggregations on loan approvals and

Listing 12.16 Adding a callback for notification of completed produce requests
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rejections directly in one place. Your first step toward using Spring Kafka with Kafka
Streams is that you’ll add an annotation to the configuration class. 

@SpringBootApplication(scanBasePackages = {"bbejeck.spring.datagen",
                       "bbejeck.spring.streams.boot"})        
@EnableKafka        
@EnableKafkaStreams                                    
@Configuration                                     
public class KafkaStreamsLoanApplicationApplication {

  //Configuration items left out for clarity

}

You’ve seen some of this code before, but the @EnableKafkaStreams is new and
required to activate Spring Boot’s support for running Kafka Streams applications. 

TIP You’ll notice in listing 12.17 that we’ve specified the packages to scan for
components to include in the container. You won’t need to do this if you have
everything required for the application in the same package as the annotated
configuration class.

Applying the @EnableKafkaStreams annotation, Spring will create a wrapper around
the KafkaStreams instance and control the lifecycle (starting and stopping) of the
streams application. Before we build the Kafka Streams application itself, you’ll need
to provide one more bit of configuration. 

@Bean(name =
     KafkaStreamsDefaultConfiguration.
➥ DEFAULT_STREAMS_CONFIG_BEAN_NAME)          
KafkaStreamsConfiguration kafkaStreamsConfiguration() {
  Map<String, Object> streamsConfigMap = new HashMap<>();      
  streamsConfigMap.put(StreamsConfig.APPLICATION_ID_CONFIG,
                       "loan-processing-app");
  streamsConfigMap.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG,
                       bootstrapServers);
  return new KafkaStreamsConfiguration(streamsConfigMap);   
}

When starting a Spring Boot application with the @EnableKafkaStreams annotation,
the application will expect to find a Spring Bean named defaultKafkaStreamsConfig
providing the configurations used to create the StreamBuilderFactoryBean, which
creates the StreamsBuilder instance and will also control the starting and stopping
of the Kafka Streams application. If you don’t require any modifications on the

Listing 12.17 Adding annotation to the configuration class

Listing 12.18 Configurations required for Kafka Streams with @EnableKafkaStreams
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KafkaStreams instance itself, then at this point, you’ve done everything needed to run
a Kafka Streams application. All that is left is to create the application itself. 

 But before we build the application, let’s quickly discuss what steps you can take
when you need access to the underlying KafkaStreams instance. For those times you
require access, Spring provides the StreamsBuilderFactoryBeanCustomizer inter-
face, a functional or single abstract method interface. The functional interface is ideal
to work with as you can use a Java lambda to represent it versus a concrete object
instance. So when would you need to access the KafkaStreams object? Consider the
case where you’d like a StateListener to notify you of when KafkaStreams transi-
tions to a running state so you can log the active tasks’ topic-partition assignment
information. 

 So, to set the StateListener, you’d create two new bean definitions in your con-
figuration class. The first is the KafkaStreamsCustomizer, which gives you access to
KafkaStreams before it starts. The second bean is the StreamsBuilderFactory-
BeanCustomizer, which accepts the KafkaStreamsCustomizer for applying your
desired changes. 

@Bean
KafkaStreamsCustomizer getKafkaStreamsCustomizer() {
 return  kafkaStreams ->
    kafkaStreams.setStateListener((newState, oldState) -> {   
    if (newState == KafkaStreams.State.RUNNING) {
        LOG.info("Streams now in running state");
      kafkaStreams.metadataForLocalThreads()
        .forEach(tm -> LOG.info("{} active task info: {}",
                         tm.threadName(), tm.activeTasks()));   
    }
    });
}

So with the KafkaStreamsCustomizer, we can access the KafkaStreams instance—in
this case, to set the StateListener. To get this bean into the StreamsBuilderFactory-
Bean, you create the second bean definition as shown in the following listing. 

@Bean
StreamsBuilderFactoryBeanCustomizer kafkaStreamsCustomizer() {   
  return  streamsFactoryBean ->
 streamsFactoryBean
     .setKafkaStreamsCustomizer(getKafkaStreamsCustomizer());   
}

With these two bean definitions added to the configuration class, you can access the
KafkaStreams object. 

Listing 12.19 Kafka Streams customizer for setting a StateListener

Listing 12.20 Creating a customizer to apply KafkaStreams object settings
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 Now that we’ve covered how to access the KafkaStreams object in the Spring Boot
application, let’s build the application itself. Building the Kafka Streams application
with the @EnableKafkaStreams annotation differs from what we’ve seen before. To
show the differences, let’s dive right into an example. Let’s say you’ve taken your loan
application and converted it from using Kafka producer and consumer clients to a
Kafka Streams application. 

@Component                              
public class LoanApplicationProcessor {

  @Value("${loan.app.input.topic}")
  private String loanAppInputTopic;

@Autowired
public void loanProcessingTopology(StreamsBuilder builder) {   

KStream<String, LoanApplication> processedLoanStream =   
   builder.stream(loanAppInputTopic,
                Consumed.with(stringSerde,
                        loanApplicationSerde))
                .mapValues(loanApp -> {
double monthlyIncome = loanApp.getReportedIncome() / 12;
double monthlyDebt = loanApp.getReportedDebt() / 12;
double monthlyLoanPayment =
        loanApp.getAmountRequested() / (loanApp.getTerm() * 12);
double debtRatio =
        (monthlyDebt + monthlyLoanPayment) / monthlyIncome;

boolean loanApproved =
       debtRatio <= 0.33 && loanApp.getCreditRating() > 650;

return LoanApplication.Builder.newBuilder(loanApp)
                              .withApproved(loanApproved)
                              .build();
  });
}

From looking at this code listing, it’s standard Spring configuration, declaring a class
as a @Component and injecting the desired objects with the @Autowired annotation,
this time on a method, not a constructor. I mentioned some differences previously,
and if you look closely, you’ll notice the void return type for the loanProcessing-
Topology method. The method doesn’t return the StreamsBuilder instance since the
Spring container manages it. 

 When starting the container to build a stream application, Spring will pass around
a singleton StreamsBuilder to all methods that reference it and have the @Autowired
annotation on it. Then, when StreamsBuilderFactoryBean begins starting the Kafka-
Streams instance, it will execute the StreamsBuilder.build method. 

Listing 12.21 Converted Kafka producer and consumer app to Kafka Streams
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 The effect of having Spring control the StreamsBuilder instance in this way means
you can potentially have the classes making up your topology spread out among differ-
ent classes. While it’s possible to take this approach, I’d still recommend having the
entire topology in a single class, as when it comes time to debug any potential issues,
it will be much easier to track down what’s wrong by viewing the entire topology in
one place. 

 You’ve just seen how to build a Kafka Streams application with Spring Boot and the
@EnableKafkaStreams annotation. Taking this approach does make things easier, as
Spring takes care of most of the configuration details for you. But everything is a
tradeoff. Here, while you gain the ease of starting up and managing Kafka Streams,
you also lose some visibility into what’s happening with the application. 

 But there’s another tradeoff you can make: you can give up some of the conve-
nience in exchange for more control and visibility into how Kafka Streams is put
together, and we’re going to cover that next. You’ll still use Spring to wire the appli-
cation together. Instead of the Spring container managing the lifecycle of the
KafkaStreams object and how the topology gets put together, you’ll take on that respon-
sibility. We will take the same Kafka Streams application and make minor changes, start-
ing with the class that builds the topology (some details are omitted for clarity). 

@Component
public class LoanApplicationTopology {   

}

The first change is to rename the LoanApplicationProcessor to LoanApplication-
Topology. By changing the name, you’re declaring the intent that the class will con-
tain the entire topology for the Kafka Streams application, not just a single processor
or section of it. Next, you’ll update the signature of the loanProcessingTopology
method, which itself will require an additional change.

private final KafkaStreamsConfiguration streamsConfigs;

@Autowired
public LoanApplicationTopology(          
     KafkaStreamsConfiguration streamsConfigs) {
    this.streamsConfigs = streamsConfigs;
}

public Topology topology() {                        
  StreamsBuilder builder = new StreamsBuilder();     

// Build topology

return builder.build(streamsConfigs.asProperties());   

Listing 12.22 Renaming the class to reflect its role

Listing 12.23 Updating the method and explicitly creating a StreamsBuilder
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So, the first change to support the method change is to update the constructor to
auto-wire the KafkaStreamsConfiguration. You’ll see next how this is related to
refactoring the method. The difference at annotation two is that you’ve changed the
method’s name to topology to reflect its role and removed the StreamsBuilder param-
eter, creating it directly instead at annotation three. You’ve also updated the return
type from void to Topology, reflecting the change at the last line of the method where
you execute StreamBuilder.build returning the Topology instance. 

 The next change is an addition—creating a class to support making the Kafka-
Streams instance and controlling the lifecycle of the streams application (some details
are omitted for clarity). 

@Component
public class KafkaStreamsContainer {

@Autowired
public KafkaStreamsContainer(
       final LoanApplicationTopology loanApplicationTopology,    
       final KafkaStreamsConfiguration appConfiguration) {    
    this.loanApplicationStream = loanApplicationTopology;
    this.appConfiguration = appConfiguration;
}

You’ve created the KafkaStreamsContainer class to handle the tasks required to build
and run the Kafka Streams application. Notice the constructor has the @Autowired
annotation and two parameters, the LoanApplicationTopology and the KafkaStreams-
Configuration class that Spring will inject for us. Next, let’s see how you’ll use these
two objects to get Kafka Streams up and running. 

@PostConstruct         
public void init() {
    Properties properties = appConfiguration.asProperties();
    Topology topology = loanApplicationStream.topology();       
    kafkaStreams = new KafkaStreams(topology, properties);   

    kafkaStreams.setStateListener((newState, oldState) -> {
      if (newState == KafkaStreams.State.RUNNING) {
        LOG.info("Streams now in running state");
        kafkaStreams.metadataForLocalThreads().forEach(tm ->
          LOG.info("{} assignments {}", tm.threadName(), tm.activeTasks()));
      }
        });
    kafkaStreams.start();     
}

Next, you add the init method that creates the KafkaStreams instance and starts it
running. But the question is when to call the init method. This part is handled by

Listing 12.24 Creating a class to support Kafka Streams

Listing 12.25 Creating and running Kafka Streams
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Spring for you via the PostConstruct you’ve decorated the method with. When you
add a PostConstruct to a container component class, the Spring container will exe-
cute the method when the object is fully constructed, so in this case, after the required
dependencies are injected, Spring will call the init method, automatically creating
the KafkaStreams instance and starting it up. But we did say you would handle the full
lifecycle, so what about stopping a KafkaStreams application? For that, you’ll add one
more method. 

@PreDestroy                
public void tearDown(){
    kafkaStreams.close(Duration.ofSeconds(10));         
}

To stop the application, you’ll use a similar approach, placing the PreDestroy annota-
tion on a method that the Spring container will call before it tears down the managed
component when it begins shutting down. 

 Now, the changes are complete, giving you more visibility into the construction of
the Kafka Streams application and how it’s started and shut down. There isn’t a right
or wrong decision here with the approach you can take, and it comes down to per-
sonal preference and your different requirements. 

Summary
 Spring Kafka provides abstractions, making it easier to work with Kafka. You can

use the standard approach of classic Spring, but you’ll have to add the required
configuration for the KafkaTemplate and KafkaListener supporting classes. By
contrast, by using Spring Boot, the configuration level you need is significantly
reduced by adding @SpringBoot and @EnableKafka annotations at the class dec-
laration level. Typically, you’d also want to place this on a configuration class
denoted with a @Configuration annotation. Since Spring Boot follows the prac-
tice of convention over configuration, if you’re happy with the defaults, there is
little configuration for you to do.

 When setting the concurrency level for a KafkaListener, the Spring Container
will create a corresponding number of threads running a KafkaConsumer for
the listener. You must ensure the method decorated with the @KafkaListener
annotation is thread safe when setting the concurrency level to a value of more
than one.

 Spring Boot also provides an @EnableKafkaStreams annotation that covers the
lifecycle of working with Kafka Streams. But this is not required, and if you pre-
fer to have more control over your stream application, you can use Spring just
for the dependency injection capabilities only. 

Listing 12.26 Stopping the Kafka Streams application
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Interactive Queries
Earlier in this book, you learned how to build stateful applications in Kafka Streams.
When you enable a stateful operation like an aggregation, Kafka Streams creates a
state store to hold the calculation results.

 The point of running an aggregation or something similar is you need to gain
information or insight from the combined values that it contains. For example,
your application keeps track of failed login attempts. Too many indicate someone is
trying to gain illegal entry into an account or machine. Another example of a less
nefarious nature is tracking page views of a website to determine the most advanta-
geous time to run ads. I could continue listing examples, but you understand. But
you have to be able to view this information promptly for it to be helpful. Other-
wise, it’s not worthwhile.

This chapter covers
 Learning about querying the state of a Kafka 

Streams application

 Discovering what’s required to enable Interactive 
Queries

 Building an Interactive Queries app with Spring 
Boot
374
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 In this chapter, you’ll learn how to enable Interactive Queries (IQ) from your
Kafka Streams applications. You’ll also learn how to build your web-based dashboard
application with Spring Boot that will render the stateful results of a Kafka Streams
example you previously created in the book.

13.1 Kafka Streams and information sharing
Typically, to view the results of a calculation performed by an application, you need
first to export the results to a relational database. Then, connect a dashboard applica-
tion to the database to pull the information for display. Figure 13.1 shows how this
could look. 

From this picture, you can easily see the flow of information. An application performs
a stateful computation and exports the results to a database, and the dashboard que-
ries the database to display the results. This approach is an acceptable way to access
information generated from an application. But Kafka Streams offers the ability to
simplify this information-sharing process. This ability comes from IQ. IQ provides the
ability to query the information contained in the state store directly. This direct access
will simplify your architecture because you can now view the data as Kafka Streams cal-
culates it, eliminating a couple of moving parts from your application infrastructure.
Figure 13.2 provides a picture to help demonstrate what I’m talking about here.

 So, as you can see here, by directly accessing the information from the state store,
you get to comprehend the events as they’re happening. You’ve also simplified your
architecture by removing the database and a data “transfer.”

NOTE I’m not saying that IQ will eliminate the need for a relational database.
You’ll most certainly always require them in your applications. But with IQ,
you now have another option that, in some situations, helps you view the
information you need more efficiently.

100% stacked column

Querying database to
display results

Kafka Streams application

State store

Source

Aggregation

Sink

Topic

Results exported
to a database

Figure 13.1 Exporting stateful results to a database for viewing from a dashboard application
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13.2 Learning about Interactive Queries
IQ provides the ability to view the results of Kafka Streams stateful operation directly
from the state store containing the results of aggregation or reduction. This means
you can view the status of the stateful operation in real time. To enable IQ, you need
to take two small steps:

1 Provide the application.server configuration, which contains a host and port
that clients can connect to a Kafka Streams instance to run a query. If you have
more than one Kafka Streams instance (all with the same application ID), then
each instance must provide a unique host:port combination. 

2 Give each state store a unique name via the Materialized configuration object.
While it’s true that Kafka Streams will give each state store a name if none exists,
the store is unavailable for querying if you don’t explicitly provide one. The fol-
lowing listing provides a code example demonstrating what I mean. 

Materialized.<String, LoanAppRollup>as(
➥ Stores.inMemoryKeyValueStore(loanAppStoreName))    
                    .withKeySerde(stringSerde)
                    .withValueSerde(loanAppRollupSerde))

Materialized.<String, LoanAppRollup>as(
                     loanAppStoreName)                      
                    .withKeySerde(stringSerde)
                    .withValueSerde(loanAppRollupSerde))

Materialized.with(stringSerde, loanAppRollupSerde)   

Listing 13.1 Naming state stores to enable them for querying
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Figure 13.2 Viewing stateful results in the dashboard application directly from the source

Specifies the 
store type with a 
StoreSupplier 
where you need 
to give a name

Provides a store 
name and goes 
with the default 
store type

Only passing in the required Serdes for
(de)serialization; no name given



37713.2 Learning about Interactive Queries
You’ve indicated you want to use an in-memory store with the given StoreSupplier,
and the name you provide is the store name. You’re only giving the name and accept-
ing the default store type, which is persistent. Either way, both of these approaches
enable the store for queries. The choice of the StoreSupplier doesn’t matter. With
any of them, you must give a name, which becomes the store’s name. You don’t use a
name or a supplier, so this store will not be eligible for querying. 

 To refresh your memory, Kafka Streams ends up with a state store per task, and
since each task represents a single partition, you end up with a store per partition.
What makes this critical to our discussion here is that when you deploy multiple Kafka
Streams application instances, each instance is only responsible for a subset of the
total number of tasks (partitions), as Kafka Streams spreads the processing load across
other applications. For example, if the source topic has six partitions and you’ve started
three application instances, each one will be responsible for two.

 Since the state stores for Kafka Streams are local for each instance, the effect of
spreading the processing load is that you’re distributing state across multiple machines.
Figure 13.3 is an illustration that should help make this concept clear to you.

Given that you have distributed state and the state stores in Kafka Streams are key-
value pairs, how do you know which instance to query? The excellent news is that
Kafka Streams provides the infrastructure, so you don’t have to know which instance is
responsible for the partition where a given key is. You pick one to query, and if its state
doesn’t have the key in question, it knows which one does. It will forward the query on
your behalf and return the results to you.

Host 1 Host 2 Host 3 Host 4

Kafka Streams application deployed on four different hosts

State is distributed
across all four instances.

Figure 13.3 State in Kafka Streams distributed across multiple machines
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 This routing of queries is possible because the rebalance protocol allows for encod-
ing arbitrary data in the payload. So when Kafka Streams application instances rebal-
ance, in addition to providing all the partitions each one is responsible for, they also
include the individual application.server configurations. Let’s look at figure 13.4,
which is a graphic illustrating this process.

So, each application ends up with metadata knowing all the partitions each other
instance (again with the same application ID) is responsible for. Additionally, the
application server information is known for each one, so when you query a Kafka
Streams application with a given key, it determines the partition the key would fall
into by taking the hash of the key modulo the number of partitions (assuming hash
partitioning). If the current Kafka Steams app doesn’t own that partition, it knows
which one does, and it will forward the request since it also knows the host and port
for the queries on that machine. This metadata sharing and request forwarding is a
somewhat complex process, so figure 13.5 shows this process in action.

 While Kafka Streams provides the internal plumbing for application instances with
the same application ID to share metadata, the communication layer between them
does not. You must implement the query serving layer and the internal communica-
tion parts, which you will do in the next section.

Host 1 Host 2 Host 3 Host 4

Kafka Broker - Group Controller

Each member
of the group sends
data during a
rebalance.

Controller on the
broker side
replies with
combined
data from
all members.

Figure 13.4 Rebalance distributes metadata to all instances with the same application ID.
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13.2.1 Building an Interactive Queries app with Spring Boot

We will take a step-by-step process to build the IQ layer in your Kafka Streams applica-
tion. The good news is that you’ve already laid the groundwork with the example
application, bbejeck.spring.streams.container.KafkaStreamsLoanApplication-

Application. The steps you’re going to take next are as follows:

1 Enable the Spring Boot application to have an embedded web server when
starting up.

2 Add a RestControler to handle incoming query requests either directly from
users or sibling applications. 

3 Inside the controller, the class adds logic to process queries.
4 Build an HTML index page to make REST API calls and continually display

loan application results on a single page.

Along the way with building this, you’ll also learn about the latest version of IQ
(IQv2), a significant improvement over the first version.

 So, let’s tackle each item on our list in order, starting with enabling a web server on
start-up. With our previous Spring Boot application in the main method, we explicitly
turned off the web server, as shown in the following listing.

SpringApplicationBuilder applicationBuilder =
new SpringApplicationBuilder(LoanApplicationProcessingApplication.class)
                .web(WebApplicationType.NONE);    

You turned off the web server as you did not need it. This application ran with no
need to accept external requests. But now you want to expose your app to receive

Listing 13.2 Disabling the web-server

Host 1 Host 2

Web application
queries the embedded
web server.

1

2

3 Host 1 determines the key
belongs to a partition that
host 2 is responsible for
so it forwards the query.

Host 1 returns the
result of the query
forwarded to host 2.

Figure 13.5 Determining the correct host for a given query
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requests over HTTP to query the state of your loan processing. To do this, you must
change the WebApplicationType enum parameter to the SpringApplicationBuilder. 

SpringApplicationBuilder applicationBuilder =
new SpringApplicationBuilder(KafkaStreamsLoanApplicationApplication.class)
                .web(WebApplicationType.SERVLET);     

So the only change you need to make is to switch the type from NONE to SERVLET, and
this will enable the web server when starting your application.

NOTE Servlets are a Java technology you can deploy on web servers to build
web-based applications. We won’t go into details here, but you can find more
information at http://mng.bz/0laJ.

The next step is creating a class to handle the incoming query requests, as in the fol-
lowing listing (some details are omitted for clarity).

@RestControler                              
@RequestMapping("/loan-app-iq")            
public class LoanApplicationController {

}

The first step is to create the class and add two new annotations at the class declara-
tion level. The @RestController annotation does two main things for us: it marks this
class as a web controller and enables the automatic conversion to JSON of the object
you return in response to a request. The @RequestMapping annotation maps incoming
HTTP requests to request handling classes and methods. The annotation at the class
level specifies that this controller handles all requests with the specified base URL. 

 Before we go any further, let’s take a minute to define what the term controller
means. A web controller is part of an MVC (Model–View–Controller) design pattern
for web applications. In this section, you will build a Spring MVC application. The
model represents the data, the view is responsible for presenting a visual component,
and the controller is responsible for accepting and processing incoming requests and
responding to them displayed via the view component. Figure 13.6 illustrates how the
MVC components fit together in a web application. 

 Now, with the brief description of the MVC pattern for web applications, let’s get
back to building the controller. So far, we’ve covered declaring the class and providing
the required annotations for the controller to receive HTTP requests. Now let’s look
further into how it will work by looking at listing 13.5.

 
 

Listing 13.3 Enabling a web server for a Spring Boot application

Listing 13.4 Creating the controller for responding to HTTP requests

Enables the web-server

Adds a RestController annotation

Specifies the base URL 
this controller handles

http://mng.bz/0laJ
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@RestController
@RequestMapping("/loan-app-iq")
public class LoanApplicationController {

  @Value("${store.name}")             
  private String storeName;

  @Value("${application.server}")
  private String applicationServer;        

  private final KafkaStreams kafkaStreams;           
  private final RestTemplate restTemplate;       

  @Autowired
  public LoanApplicationController(KafkaStreams kafkaStreams,
                                   RestTemplate restTemplate) {
      this.kafkaStreams = kafkaStreams;
      this.restTemplate = restTemplate;
   }
}

Here you see the injected configuration fields that you’ve seen before and the
@Autowired annotation on the constructor injecting the KafkaStreams instance built
into KafkaStreamsContainer and RestTemplate from Spring. You’ll use these to com-
municate with the other Kafka Steams applications when handling requests with keys the
current application instance is not responsible for. To inject the KafkaStreams instance,
we will need to make a quick modification to the KafkaStreamsContainer class. 

@Bean                                  
public KafkaStreams kafkaStreams() {
    return kafkaStreams;
}

Listing 13.5 Dependencies needed for the controller

Listing 13.6 Exposing a KafkaStreams object as a Spring bean

Model

Controller
View

Figure 13.6 MVC components in a web application
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By adding this method to the KafkaStreamsContainer class with the @Bean annota-
tion, when any other class in the container has a reference to a KafkaStreams object
as a dependency, the Spring container executes this kafkaStreams method to inject
into the class. When the Spring container calls the LoanApplicationController con-
structor, it follows this exact process. When we look at a request handling method,
you’ll see how the controller uses the KafkaStreams object next. 

@GetMapping(value = "/loantype/{category}")  
 public QueryResponse<LoanAppRollup> getCategoryRollup(@PathVariable
                             String category) {             
    KeyQueryMetadata keyMetadata =            
            getKeyMetadata(symbol,
                Serdes.String().serializer());
  if (keyMetadata == null) {
        return QueryResponse.withError(String.format(
    "ERROR: Unable to get key metadata after %d retries", MAX_RETRIES));
  }

}

The @GetMapping annotation on the method means web requests with the URL
http://loan-app-iq/loantype/<category> are routed to the LoanApplication-
Controller.getCategoryRollup method. The KeyQueryMetadata is an essential
object as it will contain the information required to determine whether the current
instance queried is responsible for the partition the key in the query belongs to. The
getKeyMetadata is simply an internal method, and it’s worth taking a quick look at
what’s going on there (some details are omitted for clarity). 

private <K> KeyQueryMetadata getKeyMetadata(K key,
                     Serializer<K> keySerializer) {
  int currentRetries = 0;
  KeyQueryMetadata keyMetadata =
      kafkaStreams.queryMetadataForKey(storeName,
                                       key,
                                       keySerializer);   

  return keyMetadata;

In this code block, you can now see one of the reasons we need a reference to the
KafkaStreams object: the ability to extract essential metadata for the key involved in
the query. One of the critical fields of the KeyQueryMetadata is the HostInfo field,
which contains the host and port of the server instance, with the Kafka Streams instance

Listing 13.7 Method annotated to handle incoming requests for a given loan category

Listing 13.8 Implementation of the getKeyMetadata method retrieving KeyQueryMetadata
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containing the data in question. To enable this comparison of host information, when
building the controller, you’ll use the application.server configuration to build a
HostInfo object for comparison. 

@PostConstruct
public void init() {
    String[] parts = applicationServer.split(":");
    thisHostInfo = new HostInfo(parts[0],
                    Integer.parseInt(parts[1]));      
}

In the init method (executed by the Spring container after the controller construc-
tor call completes), you build a HostInfo object. You’ll use this to compare it to the
one returned in the metadata, as shown in the following listing (some details are omit-
ted for clarity). 

if (targetHostInfo.equals(thisHostInfo)) {   

  Set<Integer> partitionSet =
        Collections.singleton(keyMetadata.partition());

  StateQueryResult<LoanAppRollup> keyQueryResult =
      kafkaStreams.query(StateQueryRequest.inStore(storeName)   
          .withQuery(query)
          .withPartitions(partitionSet));

  QueryResult<LoanAppRollup> queryResult =
         keyQueryResult.getOnlyPartitionResult();      

} else {                                  
  String path = "/loantype/" + type;
  String host = targetHostInfo.host();
  int port = targetHostInfo.port();
  queryResponse = doRemoteRequest(host, port, path);   
}

To determine whether you’ve queried the correct host, you compare the HostInfo
object retrieved from the metadata with the one created by the controller. If they are
equal, you run the query with the KafkaStreams.query method and extract and
return the results. Otherwise, you extract the host and port information and execute
the search remotely on the correct host with a REST API call. I’m skipping over sev-
eral details in this code listing, so let’s take a minute to go over those details now. 

Listing 13.9 Building a HostInfo object from the application server configuration

Listing 13.10 Comparing HostInfo from key metadata to HostInfo for the current host
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NOTE These code examples create a few internal objects to support running
examples and are not part of Spring or Kafka Streams. I won’t describe those
as they don’t add anything to what you’re learning, but you can view them by
looking at the source code for the book.

The critical component of IQ is the Query<R> interface that all queries must imple-
ment. There are currently four implementations:

 KeyQuery

 RangeQuery

 WindowKeyQuery

 WindowRangeQuery

You’ll use a KeyQuery when looking for results of an individual key. The RangeQuery is
useful when seeing results from a range of keys. You’d use a WindowKeyQuery with win-
dowed state stores as it allows you to specify a time from and to for the query, and the
WindowRangeQuery is also for windowed stores and enables you to identify a time
range for querying. Other than the specific parameters you provide to the individual
Query object, you’ll use them similarly when executing the query. You create a Key-
Query by using the static factory method provided by the class. 

KeyQuery<String, LoanAppRollup>
         keyQuery = KeyQuery.withKey(loanType);

With the KeyQuery.withKey method, you provide the key, and the method returns a
KeyQuery object. The types on the KeyQuery are the expected query results, the key,
and the value. 

 The next step is to create a StateQueryRequest object that you’ll pass to the Kafka-
Streams.query method. It uses the builder pattern, as shown in the following listing. 

StateQueryRequest.inStore(storeName)     
          .withQuery(query)                   
          .withPartitions(partitionSet))    

The StateQueryRequest object contains essential information like the name of the
state store, the query object, and the partition for the key (you got this earlier from
the KeyMetadata object). Other than the required parameters of the store name and
the query itself, the different parameters of the StateQueryRequest are optional.
They include the partitions requiring active tasks and the amount of acceptable lag
when querying standby tasks. We’ll cover queries with standby tasks a little later in
this chapter. 

Listing 13.11 Creating a KeyQuery

Listing 13.12 Building the StateQueryRequest
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 After executing the KafkaStreams.query method, you’re set to capture the result-
ing StateQueryResult in a variable. 

StateQueryResult<LoanAppRollup> stateQueryResult =      
         kafkaStreams.query(StateQueryRequest.inStore(storeName)
                            .withQuery(query)
                            .withPartitions(partitionSet));

Once you have the StateQueryResult, you can extract the underlying result from the
state store. The overall query result(s) are stored in a Map with the partition as the key
and a QueryResult object as the value. In this case, we know the result only relates to a
single partition since it’s a key query, so we can use the convenience method State-
QueryResult.getOnlyPartitionResult. 

QueryResult<LoanAppRollup> queryResult =
     stateQueryResult.getOnlyPartitionResult();      

 LoanAppRollup loanAppRollup = queryResult.getResult()   

Now that you’ve extracted the result, you’re ready to return it to the web application,
as shown in the following listing (some details are omitted for clarity).

queryResponse =
    QueryResponse.withResult(
➥ queryResult.getResult().value());      
// possibly add some metadata from the query
return queryResponse;                          

After getting the raw result, you store it as a custom object capable of holding meta-
data for display in the view. The web controller automatically converts everything to
JSON for rendering in the web application. For the multipartition results, you’ll
extract the Map and iterate over the contents, as in the following listing (some details
are omitted for clarity).

Map<Integer, QueryResult<KeyValueIterator<String,
      LoanAppRollup>>> allPartitionsResult =
       result.getPartitionResults();            

        allPartitionsResult.forEach((key, queryResult) -> {    
            // Do something with the results
        });

Listing 13.13 Setting the query result in a variable

Listing 13.14 Extracting the query result

Listing 13.15 Returning the result to the web view

Listing 13.16 Extracting multiple partition results
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There are a couple of essential notes here to keep in mind. First, when retrieving the
results of a query, if you use the getOnlyPartition method but there are multiple
partition results, the QueryResult object will throw an exception. But the rule is evi-
dent in this case. With a query involving a single key (i.e., KeyQuery), you can safely
use the single partition extraction approach, and for all others, you’ll want to iterate
over the resulting map. 

 So far, you’ve seen running the query on the current host, but how would you exe-
cute it on a remote one when the current one does not have the key? Earlier in this
section, we saw an internal method, doRemoteQuery, used by the controller for that
case. The following listing shows the implementation of that method (some details are
omitted for clarity).

private <V> QueryResponse<V> doRemoteRequest(String host,
                                             int port,
                                             String path) {
  QueryResponse<V> remoteResponse;
  try {
      remoteResponse = restTemplate.getForObject(BASE_IQ_URL + path,
                                            QueryResponse.class,
                                            host,
                                            port);        

  } catch (RestClientException exception) {    
      remoteResponse = QueryResponse.withError(exception.getMessage());
  }
  return remoteResponse;

For the case where another Kafka Streams application instance is responsible for the
key, you’ll use the RestTemplate to issue a REST API call to the remote host, where it
will follow the exact execution path and return the result to the current host which
will return it to view for rendering.

 Before we wrap up this chapter, we have some additional items to discuss. First is
the different approach you’ll take with a range query. Unlike the KeyQuery, where you
can specifically query a single host, the range query needs to execute against all Kafka
Streams instances due to the distributed partition assignment. To run the query across
all application instances, you’ll want to know which ones contain the state store in
question and its partition assignment.

Collection<StreamsMetadata> streamsMetadata =
                  kafkaStreams.streamsMetadataForStore(storeName);   
List<LoanAppRollup> aggregations = new ArrayList<>();

Listing 13.17 Executing a query on the remote host

Listing 13.18 Setting up to query all instances for a range query
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streamsMetadata.forEach(streamsClient -> {               
 Set<Integer> partitions =
            getPartitions(streamsClient.topicPartitions());
  QueryResponse<List<LoanAppRollup>> queryResponse =
                    doRangeQuery(streamsClient.hostInfo(),  
            Optional.of(partitions),
            Optional.empty(),
            lower,
            upper);

Since you need to execute a range query across all hosts, you’ll need to use the Kafka-
Streams.streamsMetadataForStore, which returns metadata from each Kafka Streams
application that contains the store in its topology. You can then iterate over the meta-
data for each one and execute the query for the current instance and remotely for
the rest. 

 The second item to discuss is the ability to query a standby task. When a Kafka
Streams instance goes offline, there will be a rebalance to reassign its partitions to the
remaining active members. But this can take some time to complete, so Kafka Streams
allows us to make the tradeoff of availability over consistency by allowing for querying
a standby task. The tradeoff is that the standby will only partially catch up to the active
members before it goes offline, but you can still serve query results.

 To query a standby, you’ll look for any error when executing a query on the active
host by catching a RestClientException. Then, in your query processing, if you find
an error, you’ll issue it to the standby, as shown in the following listing. 

if (queryResponse.hasError() && !standbyHosts.isEmpty()) {    
  Optional<QueryResponse<LoanAppRollup>> standbyResponse =
           standbyHosts.stream()    
          .map(standbyHost -> doKeyQuery(standbyHost,
                                         keyQuery,
                                         keyMetadata,
                                         symbol,
                                         HostStatus.STANDBY))
          .filter(resp -> resp != null && !resp.hasError())
          .findFirst();                                 
  if (standbyResponse.isPresent()) {
      queryResponse = standbyResponse.get();
  }
}

 return queryResponse;    

When detecting an error and standby tasks are enabled, you can elect to query the
standby task when you receive an error querying the active task. You must have standby
tasks enabled via configuration to use this feature. 

Listing 13.19 Issuing a standby query in the event of an error querying the active host
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Summary
 IQ provides the ability to query the information contained in the state store

directly.
 Direct access to stateful results simplifies architecture and, in some cases, may

eliminate the need for a relational database to display results.
 Providing a name to the Materialized object either directly or via a Store-

Supplier enables the store for queries.
 Spring Boot, by default, starts a web server automatically with the application.

This embedded web server is excellent for Kafka Streams applications as you’ll
automatically have the serving layer for IQ available.

 By using the @RestController annotation on a controller class, methods han-
dling web requests will automatically have the return objects converted to JSON
for the web response. 



Testing
So far, we’ve covered the components for building an event streaming application:
Kafka producers and consumers, Kafka Connect, and Kafka Streams. But I’ve left
out another crucial part of this development until now: how to test your applica-
tion. One of the critical concepts we’ll focus on is placing your business logic in
standalone classes entirely independent of your event streaming application because
that makes your code much more accessible to test. I expect you’re aware of the
importance of testing, but I’d like to cover the top two reasons testing is just as nec-
essary as the development process itself.

 First, as you develop your code, you’re creating an implicit contract of what you
and others can expect about how the code performs. The only way to prove that
the application works is by testing it thoroughly. You’ll use testing to provide a good

This chapter covers
 Understanding the difference between unit 

and integration testing

 Testing Kafka producers and consumers

 Creating tests for Kafka Streams operators

 Writing tests for a Kafka Streams topology

 Developing effective integration tests
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breadth of possible inputs and scenarios to ensure everything works appropriately
under reasonable circumstances. The second reason you need comprehensive testing
is that it helps you deal with the inevitable changes that occur with software. A rigor-
ous set of tests gives you immediate feedback when the new code breaks the expected
behaviors.

 Additionally, when you do a major refactor of the application, having your tests
pass gives you confidence about releasing the updated software. Once you understand
the importance of testing, writing tests for distributed applications like Kafka Streams
can be challenging. You can still run these applications with simple inputs and observe
the results, but this approach has a severe drawback. You aren’t using a suite of
repeatable tests that you can run at any time, and that’s also part of your continuous
integration build. Another component of testing is the need to run the tests as fast as
possible. Thus, you’ll likely want to run a large segment of your tests without a Kafka
broker. Testing without a Kafka broker is one of the most essential points in this chap-
ter. But there will be times when you need a live broker for effective testing. This ten-
sion between using a broker or not in testing is the boundary between unit and
integration testing.

14.1 Understanding the difference between unit 
and integration testing
This section will provide an opinionated definition of unit and integration testing. I
define unit testing as a test that exercises a specific subcomponent of an application, a
particular point of the logic. For example, let’s say you have an international sales
application, and when you receive an order, you immediately convert the transaction
amount into US dollars. A unit test would validate only the currency conversion part,
with separate tests or a parameterized test for each type of expected currency.

 These types of tests are usually at the method level of a class and run very fast. The
problem with unit testing is that often there are external dependencies—for example,
a Kafka broker may be required to run the application. So, going with our immediate
example here, does that mean you need to run a Kafka broker to feed the different
currency types? The answer to that is no, and I’ll explain why you wouldn’t by way of
an analogy.

 Let’s say you’re in a play at your local theater and must learn your part. You don’t
need other actors on stage to do this, just someone, a stand-in, to feed you the
required lines to speak your parts. The person helping can also tell you if you got
everything correct.

 The same is true with a unit test. You don’t need the whole system to test a specific
part; you just need a mechanism to provide the input and the ability to validate the
results. This mechanism is called a mock object. A mock is an object that has the same
interface as the remote connecting component but no actual behavior. You explicitly
tell the mock object what it should do, such as supplying specific values, and then you
validate the results.
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 Going back to our analogy, there will be times when you need to get everyone
together to rehearse to ensure all the actors know their lines and interact with each
other as expected. This type of test in code is an integration test, not the live produc-
tion, but there’s no mocking. All external components are the real thing.

 Integration tests are also essential, but you will have a different number of them
than you will have unit tests. One of the big reasons you need more unit tests versus
integration tests is the execution speed. A typical unit test will run in a quarter to a
half a second, but an integration test can run for up to several seconds and as high as
30 seconds to a couple of minutes. Those numbers for a single test are OK, but once
you get tests numbering in the hundreds or thousands, you can see the need to have
your test suite run as quickly as possible.

 So, what’s a good indicator for writing a unit test versus an integration test? As I
stated earlier, you’ll want to use unit tests to validate the behavior of individual meth-
ods. An indicator of needing an integration test is when you need the actual behavior
of a remote component. For example, you want to see how a Kafka client application
behaves when a rebalance occurs. In that case, you’ll want an integration test where
you can trigger an actual rebalance and validate the behavior. Continuing with our
Kafka application example, you’ll run the integration test with a Kafka broker in a
Docker image, so you still have a live broker. Still, it’s contained entirely in your local
(i.e., on your laptop) development environment. Let’s wrap up this section with
table 14.1, which summarizes the difference between unit and integration testing:

14.1.1 Testing Kafka producers and consumers

Let’s say you have an application that runs a simple currency exchange operation, as
shown in figure 14.1.

 The results of non-US currency transactions are produced to a Kafka topic named
exchange-input. Your application consumes from the exchange-input topic, con-
verts the currency amount to US currency, and then produces the converted amount
to another Kafka topic, exchange-output. Listing 14.1 shows an abbreviated look at
the code (some details are omitted for clarity).

 
 
 

Table 14.1 Unit testing compared to integration testing

Type Purpose Speed
Percentage 

of use

Unit Method level, finer-grained logic, objects in 
isolation

Subsecond Majority

Integration Holistic, integrated components, course 
grained

Seconds to minutes Minority
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public void runExchange() {
  while (keepRunningExchange) {
  ConsumerRecords<String, CurrencyExchangeTransaction> consumerRecords=
               exchangeConsumer.poll(Duration.ofSeconds(5));
  consumerRecords.forEach(exchangeTxn -> {
      CurrencyExchangeTransaction tx = exchangeTxn.value();
      double convertedAmount =
            tx.currency().exchangeToDollars(tx.amount());
   CurrencyExchangeTransaction converted =
            new CurrencyExchangeTransaction(convertedAmount,
                      CurrencyExchangeTransaction.Currency.USD);
   ProducerRecord<String, CurrencyExchangeTransaction> producerRecord =
                  new ProducerRecord<>(outputTopic, converted);
   exchangeProducer.send(producerRecord...)
  }
 }

It’s a straightforward application, and you’d like to validate the currency exchange
process. You need to write a test for this application and want it to run as a unit test,
meaning there is no need for a live Kafka broker. You’ve designed the class in such a
way that only the Consumer and Producer interface are the types expected.

public CurrencyExchangeClient(
   final Consumer<String, CurrencyExchangeTransaction>
➥ exchangeConsumer,                                      
   final Producer<String, CurrencyExchangeTransaction>
➥ exchangeProducer,                                   
   final String inputTopic,
   final String outputTopic) {

Listing 14.1 Currency exchange class CurrencyExchangeClient

Listing 14.2 Specifying interfaces in the constructor

exhange-input exhange-output

Consumes currency
transaction

Converts non-US
currency to US dollars

Produces converted
currency transaction

Figure 14.1 A currency 
exchange application that 
converts from non-US 
currency to US dollars

Consumer interface 
constructor parameter

Producer interface 
constructor parameter
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        this.exchangeConsumer = exchangeConsumer;
        this.exchangeProducer = exchangeProducer;
        this.inputTopic = inputTopic;
        this.outputTopic = outputTopic;
    }

By only specifying the interface used by your application (a proper design decision at
all times), you have set yourself up for quickly testing the CurrencyExchangeClient
class by using the MockConsumer and MockProducer classes. The MockConsumer imple-
ments the Consumer interface, and the MockProducer does likewise with the Producer
interface, so we can substitute these in a test, allowing you to fully execute the applica-
tion without needing a live broker. Additionally, you can verify the interactions of the
consumer and producer and the final output.

 The tradeoff for using mock objects is that you have to specify all the interactions
and steps it needs to take. Let’s start with the consumer. There are a couple of things
to consider when we construct the test. The currency exchange client runs in a loop
indefinitely until the CurrencyExchangeClient.close method executes. But since it
runs in a loop, once we call CurrencyExchnageClient.runExchange in the test, the
control won’t return to the test until the loop terminates, giving us a chicken-and-egg
situation.

 So, we need a clean way to stop the loop without starting an additional thread in the
test. Working with a loop is common when dealing with code using a KafkaConsumer.
Ideally, you want the consumer to run indefinitely, as event streams never stop. Fortu-
nately, the MockConsumer provides this capability with the schedulePollTask method,
which allows you to supply a task added to a queue the consumer will execute for each
poll(Duration) call. Figure 14.2 is a picture of this process.

So, for each MockConsumer.schedulePollTask expected, you’ll add a task for the con-
sumer (as a Runnable instance) that it will execute, in order, for each poll() execu-
tion. Let’s take a look at this in action.

Task 1

Task 2

Task 3

MockConsumer.poll()

1
Your test setup
places tasks for the consumer
in queue.

2 Executes a task
from the queue

In the test, each call to
the poll method executes a
task from the queue.

Figure 14.2 Describing consumer behavior with a task queue
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@Test
void runExchangeApplicationTest()
CurrencyExchangeClient exchangeClient = new CurrencyExchangeClient(   
                mockConsumer,
                mockProducer,
                "input",
                "output");

mockConsumer.schedulePollTask(() -> {    
    final Map<TopicPartition, Long> beginningOffsets = new HashMap<>();
    TopicPartition topicPartition = new TopicPartition("input", 0);
    beginningOffsets.put(topicPartition, 0L);
    mockConsumer.rebalance(Collections.singletonList(topicPartition));
    mockConsumer.updateBeginningOffsets(beginningOffsets);
});

Here, you create an instance of the class under test; next, you add the first task to the
queue for the consumer. In this case, it’s all the required setup for getting the Mock-
Consumer in an initial state. Note that the tasks you supply here don’t have to provide
records the consumer will return from the poll call. They are arbitrary code you need
to run. However, at some point, we want to provide records so the consumer can
return them, exercising the code in the loop, which is what you’ll do next.

mockConsumer.schedulePollTask(() -> {
  mockConsumer.addRecord(new ConsumerRecord<>("input", 0, 0, null,
                                                  euroTransaction));
  mockConsumer.addRecord(new ConsumerRecord<>("input", 0, 1, null,
                                                  gbpTransaction));
  mockConsumer.addRecord(new ConsumerRecord<>("input", 0, 2, null,
                                                  jpyTransaction));
});

With this task, you’re supplying three records the consumer will return from the next
poll call, and all of these records should be processed in this order and passed to the
producer. Finally, you’ll add another task that will shut down the exchange client
application.

mockConsumer.schedulePollTask(exchangeClient::close);    
exchangeClient.runExchange();    

So, the final task you provide here executes the CurrencyExchangeClient.close
method, which will shut down the application. The following command is where you

Listing 14.3 Using the schedule poll task

Listing 14.4 Adding a task for returning records

Listing 14.5 Adding a final task for shutting down the exchange loop

Creates the
client instance

for the test
Adds a task to 
the queue

Adds a method handle
that will close down

the application
Starts the application 
in the test
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U

start the CurrencyExchangeClient in the test. The loop will run three times because
you’ve provided three tasks, and the application shuts down cleanly. But we have
another part to test: Has the producer received the expected records with the cur-
rency exchanged to US dollars?

List<CurrencyExchangeTransaction> actualTransactionList = mockProducer
                                        .history()   
                                        .stream()
                                        .map((ProducerRecord::value))
                                        .toList();

assertThat(actualTransactionList.get(0), equalTo(expectedEUROToUS));
assertThat(actualTransactionList.get(1), equalTo(expectedGBDToUS));
assertThat(actualTransactionList.get(2), equalTo(expectedJPYToUS));

To validate that the producer received records with the correct currency translation
and in the proper order, you use the MockProducer.history method. You map the
resulting ProducerRecord list to a list of the value objects and then compare them one
at a time to the expected value constructed earlier in the test. You can find the entire
test at streams/src/test/java/bbejeck/chapter_14/CurrencyExchangeClientTest.java
in the book’s source code. There are also tests for the Kafka Connector you developed
in chapter 5 located at custom-connector/src/test/java/bbejeck/chapter_5. I didn’t
include examples of the code in this chapter as it would be repetitive since it also uses
mock objects.

 You have tested the CurrencyExchangeClient application in a unit test that runs
very fast. You can and should add additional tests for different error conditions that
occur, but I won’t cover those here. Now, let’s continue the discussion of testing with
mocks for testing Kafka Streams operators.

14.1.2 Creating tests for Kafka Streams operators

A Kafka Streams topology will contain one or more operations that take a Single
Abstract Method (SAM) interface. This development style allows for quickly creating
an application without needing any concrete classes for these operations, and you can
supply a lambda to satisfy the behavior requirements. But the tradeoff by doing so
makes it next to impossible to provide a test for just that operation as you provide the
implementation in line. The other option is to create a concrete class implementing
the expected SAM interface. Still, some of these interfaces may need to work with
other Kafka Streams objects internal to the application, making testing challenging.

 For example, consider the Punctuator interface. Since it only has one method,
punctuate it qualifies as a SAM interface; the Punctuator typically doesn’t work by
itself and requires collaboration with other objects.

 In this section, I will show you how to mock arbitrary interfaces and objects with
Mockito (https://site.mockito.org/) to make testing with external collaborating objects

Listing 14.6 Validating the producer in the test

ses the history
method of the
MockProducer

https://site.mockito.org/
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a breeze. For this example, you will create a test for the bbejeck.chapter_9.punctuator
.StockPerformancePunctuator class (figure 14.3).

When executed, this punctuator instance will examine the contents of a state store
and forward any records that meet specific criteria. I won’t discuss how Kafka Streams
use punctuators here; instead, I’ll focus exclusively on the test. To get an idea of the
collaborators for the Punctuator, let’s take a look at the constructor.

public StockPerformancePunctuator(double differentialThreshold,
         ProcessorContext<String, StockPerformance> context,
         KeyValueStore<String, StockPerformance> keyValueStore) {

  this.differentialThreshold = differentialThreshold;
  this.context = context;
  this.keyValueStore = keyValueStore;
 }

As you can see, the first constructor parameter is a Java primitive type, which poses no
issue with testing. Still, the other two are Kafka Streams interfaces and have expected
behavior during the punctuation call. Namely, you’ll iterate over everything from the
state store and forward records matching a performance metric. By using mock
objects, however, writing this test will be straightforward. First, let’s look at creating
the mock objects for the test.

@BeforeEach
 public void setUp() {
   context = mock(ProcessorContext.class);    
   keyValueStore = mock(KeyValueStore.class);     
   stockPerformancePunctuator =
     new StockPerformancePunctuator(
                          differentialThreshold,   
                          context,
                          keyValueStore);
}

Listing 14.7 The constructor for the Punctuator shows us the required collaborators

Listing 14.8 Creating the required mock objects

State store

Punctuator

for key in store.allKeysIterator() {
if key matches
context.forward(new Record(key, value));

}

Figure 14.3 The Punctuator 
examines all records in the state 
store and forwards those matching 
a condition.

Creates a mock for 
the ProcessorContext

Creates a mock for 
the KeyValueStore

Passes all parameters to the 
StockPerformancePunctuator 
constructor
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Creating a mock object is as simple as calling the Mockito.mock (shown here as a static
import) and passing the object’s class or interface to mock. In our case, Mockito
returns an object implementing the expected interface, so you pass the returned
objects to the StockPerformancePunctuator constructor to satisfy the parameter
requirements.

 While mock objects satisfy the interface requirements, they lack any behavior, so
the next step is to give the mock objects instructions on how they will behave, which
you’ll do in the test method (some details are omitted for clarity).

@Test
void shouldPunctuateRecordsTest() {
    StockPerformance stockPerformance =
         getStockPerformance();          

    Iterator<KeyValue<String, StockPerformance>>
      storeKeyValues =
           List.of(KeyValue.pair("CLFT",
➥ stockPerformance)).iterator();             
    long timestamp = Instant.now().toEpochMilli();

    Record<String, StockPerformance> record =
           new Record<>("CFLT", stockPerformance, timestamp);   

    when(keyValueStore.all())                               
          .thenReturn(
           TestUtils.kvIterator(storeKeyValues.iterator()));
    context.forward(record);  

    stockPerformancePunctuator.punctuate(timestamp);    
    verify(context, times(1)).forward(record);  

Some of these steps are creating the necessary objects to work with. You create the
StockPerformance object with the correct properties to pass the performance criteria.
Then, you create an Iterator by first building an ArrayList containing the KeyValue
object we want the store to return. Next, we create a Record instance to give to the
ProcessorContext to forward.

 Next, you tell the mock KeyValueStore that when the all method gets called, return
this stubbed-out instance of a KeyValueIterator (created by a testing utility method in
the source code by wrapping an Iterator instance with a KeyValueIterator), which
will use the actual iterator you created before. Then, you set the mock Processor-
Context behavior. Specifically, it should expect to execute the forward method with
the Record object created before.

 You run the Punctuator.punctuate method, which will exercise all the code
inside the method, including the mock objects. Finally, you validate that the mock

Listing 14.9 The test for the StockPerformancePunctuator

Creates the 
Protobuf 
object needed

Builds an Iterator to 
supply to the mock 
KeyValueStore

The record 
to return

Tells the mock 
key-value store 
what to do when 
the all method is 
called

Sets an expected call for the 
mock ProcessorContext

Executes the 
method under testValidates the mock

ProcessorContext actions
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ProcessorContext did what it was expected to do. You’ll find the TestUtils class in
the source at streams/src/main/java/bbejeck/utils/TestUtils.java.

 In this section, you’ve learned how to unit-test Kafka Streams operators using
mock objects to stand in for the collaborating ones. Next, we’ll test a Kafka Streams
application without mock objects or a live broker.

14.1.3 Writing tests for a Kafka Streams topology

When testing a Kafka Streams application, there should be two levels of testing. It’s
usually a best practice to write the different operations, filter, mapping, aggregations,
etc., as concrete classes so you can test them individually. But the Kafka Streams DSL
takes most of these as lambda functions, making it easy to write a complete application
without much effort. But even with individual unit tests for these various functions, it’s
essential to have tests that exercise the entire topology to ensure everything works
together as expected.

 But how can we develop fast tests since a Kafka Streams application is designed to
work against a Kafka broker? Enter the TopologyTestDriver class, designed to thor-
oughly test a Kafka Streams topology (complete with state stores) but without needing
a live broker, a unit test for your entire Kafka Streams topology. The best way to learn
the TopologyTestDriver is to dive in with examples. Let’s start with our first example
of a Kafka Streams application—the Yelling application.

 Since this is our first time using the TopologyTestDriver, we’ll step through each
part of setting the test up, but for future examples, we’ll only show the central part of
what’s being covered.

@Test
@DisplayName("Should Yell At Everyone")
void yellingTopologyTest() {
 KafkaStreamsYellingApp yellingApp =
 ➥ new KafkaStreamsYellingApp();         
 Topology yellingTopology =
 ➥ yellingApp.topology(new Properties());    
 Serializer<String> stringSerializer =
 ➥ Serdes.String().serializer();                
 Deserializer<String> stringDeserializer =
          Serdes.String().deserializer();    

So, you start like you usually would for any test method by decorating the method with
the @Test and @DisplayName annotations. Inside the method, you first create an
instance of the KafkaStreamsYellingApp, which you’ll need to extract the topology
on the following line with the KafkaStreamsYellingApp.topology method. This way,
we extract the same topology used when running the application. You also create a
serializer and deserializer, which you’ll see in action in the next step when we get into
the crucial parts of building the test.

Listing 14.10 Setting up to test the Yelling Kafka Streams application

Creates an instance of the 
KafkaStreamsYellingApp

Gets the Topology 
object of the app

Creates a serializer 
for String objects

Creates a deserializer 
for Strings
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try (TopologyTestDriver driver =
                 new TopologyTestDriver(yellingTopology)) {    

    TestInputTopic<String, String> inputTopic =     
            driver.createInputTopic("src-topic",
                                    stringSerializer,
                                    stringSerializer);

    TestOutputTopic<String, String> outputTopic =    
            driver.createOutputTopic("out-topic",
                                    stringDeserializer,
                                    stringDeserializer);

In this next step, you construct the TopologyTestDriver instance, which will be the
harness for running the topology under test, which you pass as a constructor parame-
ter. There are a few overloaded constructors for the TopologyTestDriver; we’ll cover
them later with other examples.

 Next, you need to create a TestInputTopic that you’ll use to pipe records into the
topology for running the test. When you make the TestInputTopic, the name for the
topic is the first parameter, and this name must match the topic name you use when
building the topology. The other parameters here are the serializers for the keys and
the values you’ll provide for running the test. TestInputTopic will serialize each key
and value you provide so that your Kafka Streams application will receive the expected
byte arrays as it would when running for real.

 You’ll also need an output topic for the topology to write results to, which is what
you’re doing when you create the TestOutputTopic. It has the exact requirement for
the topic name parameter to match the name in the actual application. For the
TestOutputTopic, you supply key and value deserializers since the topology serializes
the output, so you’ll need a way to convert them back to concrete objects to validate
the test result.

 The next step in our test is to send input records through the topology and then
validate the output, which looks something like figure 14.4.

Listing 14.11 Building the TopologyTestDriver and input and output topics

Creates the
TopologyTestDriver instance

Builds a 
TestInputTopic

Builds a 
TestOutputTopic

TestInputTopic

Kafka Streams Topology

TestOutputTopic

TestInputTopic pipes records
into the Kafka Streams topology.

TestOutputTopic reads all
the results output by the
topology.

Figure 14.4 Piping records into the topology and then reading the output
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So, the process is calling the appropriate TestInputTopic method to send value(s)
through the topology and then using the TestOutputTopic to capture the results.

List<String> inputValues = List.of("if you don't eat your meat",   
                    "you can't have any pudding!",
                    "How can you have any pudding",
                    "if you don't eat your meat!" );

inputTopic.pipeValueList(inputValues);                  
List<String> expectedOutput = inputValues.stream()
                                        .map(String::toUpperCase)
                                        .toList();        

List<String> actualOutput = outputTopic.readValuesToList();   

assertThat(actualOutput, equalTo(expectedOutput));   

In this final section of the example, you first create some sample input (bonus points if
you can name the artist and song lyrics we’re using). You’ll then take the sample input
and send it through the topology using the TestInputTopic.pipeValueList method.
In this case, since our Kafka Streams application only works on the values of the key-
value pair, it’s perfectly acceptable to provide all the values in a list. You’re not limited to
sending in a list of values, although the TestInputTopic offers additional methods for
piping input into it for testing. I’ll list a few of them in the following listing.

pipeInput(K key, V value)             
pipeInput(K key, V value, Instant)  
pipeInput(TestRecord<K, V> testRecord)   

I want to note that there are also overloaded versions of the methods listed here,
accepting a List of the parameters. In the case of the key, value variants, you’d use a
List<KeyValue>. When do you decide to use the different method types? While there
are no fixed rules, table 14.2 provides some general guidance.

 As you can see from the table, the method you use for piping input into a Kafka
Streams test is not arbitrary and highly dependent on the topology’s actions. There’s
also a similar variety of methods for reading output from your Kafka Streams applica-
tion with the TestOutputTopic.

 
 

Listing 14.12 Sending records through the topology and validating results

Listing 14.13 Other methods for piping input from the TestInputTopic

Puts together a
list of input values

Sends all input 
into the topology

Creates a list of 
the expected 
values

Reads the output of the 
topology into a list

Asserts that actual results
equal the expected ones

Sends a key and value

Provides a key and value with 
a timestamp of the event

Sends a
TestRecord object
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readKeyValue()
readKeyValuesToList()
readRecord()
readRecordsToList()

The method you’ll use to verify the output could mirror how you feed the records into
the test. While not a strict rule, it’s something that I do myself, dumping an entire list
of input. Then you can read a list out and compare the expected to the actual output
you’ve received. Other times, you may want to pipe in a record, assert the outcome,
and then pipe another record, assert the result, and so on.

 So far in this section, I’ve introduced you to setting up a TopologyTestDriver for a
basic Kafka Streams application, but it’s not limited to testing simple topologies. You
can use the TopologyTestDriver to test highly complex topologies, and we’ll see
some examples of that in the next section.

 But before we move on to more advanced examples, I’d like to point out another
use for the TopologyTestDriver beyond testing your application for correctness. You
can also use the TopologyTestDriver to build quick Kafka Streams application proto-
types. For the most part, using TopologyTestDriver will provide most of the function-
ality you’ll need to observe the behavior of a Kafka Streams application. Some parts
that TopologyTestDriver can’t provide include task assignments, rebalancing, repar-
titions, etc. Still, you can speed up your development by building a Kafka Streams
application without needing a Kafka broker. Of course, you’ll always need tests with a
live broker, and I’ll get to those a bit later in the chapter.

14.1.4 Testing more complex Kafka Streams applications

This section will explore using the TopologyTestDriver for more advanced Kafka
Streams applications. Since we covered creating a test from start to finish previously,
I’m only going to show the specific sections of the test you’ll need to know for testing
more advanced Kafka Streams applications. For our first venture into advanced testing,

Table 14.2 Method parameters general guidance

Method parameters Reason to use

single value or list of values Simple topology; input topic has no keys, no stateful operations or state-
ful ones where you extract the key entirely from the value.

single key-value or list of 
key-values

Stateful operations; input topic does have keys.

Single TestRecord or list 
of TestRecord

Topologies using timestamps and headers; the test will advance stream 
time based on the timestamps in the records.

Instant and Duration Using an Instant provides the timestamp for that record. Overloads 
with an Instant and Duration will use the Instant for the starting 
timestamp and the Duration for the advance of each record.

Listing 14.14 Methods for reading output from the test
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we’ll look into a stateful application that performs a reduce operation. I should men-
tion that for stateful topologies, TopologyTestDriver does not buffer any records;
each input generates an output record.

 In chapter 7, we discussed building stateful Kafka Streams applications, and one of
the operations covered is a reduce operation, so let’s look at a test for one of the
examples (bbejeck.chapter_7.StreamsPokerGameInMemoryStoreReducer) now.

try (TopologyTestDriver driver = new TopologyTestDriver(topology)) {
  TestInputTopic<String, Double> inputTopic = driver.createInputTopic..
  TestOutputTopic<String, Double> outputTopic = driver.createOutputTopic...

 inputTopic.pipeInput("Anna", 65.75);    
 inputTopic.pipeInput("Matthias", 55.8);
 inputTopic.pipeInput("Neil", 47.43);

The poker game Kafka Streams application has input from players of an online poker
game where the key is the username, and the value is their current score in the game.
So here, to start the test, you input three scores, and you first want to verify the reduc-
tion happens in order, so you’ll want to read the output for the following three
records and assert the order matches the input order.

KeyValue<String, Double> actualKeyValue =
➥ outputTopic.readKeyValue();            
assertThat(actualKeyValue,
➥ equalTo(KeyValue.pair("Anna", 65.75)));    

actualKeyValue = outputTopic.readKeyValue();
assertThat(actualKeyValue, equalTo(KeyValue.pair("Matthias", 55.8)));

actualKeyValue = outputTopic.readKeyValue();<
assertThat(actualKeyValue, equalTo(KeyValue.pair("Neil", 47.43)));

In this block, you read three records and assert the order matches the order you
piped into the application. So far, so good, but you can perform another level of test-
ing. This current application is stateful, so a state store keeps the state of the latest
reduce operation. While you just verified the output, you can also inspect the state
store and validate that its content matches the newest output.

KeyValueStore<String, Double> kvStore =
     driver.getKeyValueStore("memory-poker-score-store");   

assertThat(kvStore.get("Anna"), is(65.75));    
assertThat(kvStore.get("Matthias"), is(55.8));
assertThat(kvStore.get("Neil"), is(47.43));

Listing 14.15 Setting up the test for a reduce operation

Listing 14.16 Asserting the order of records in a reduce

Listing 14.17 Validating the state store contents match the latest output

Executes the pipeInput 
method three times

Reads the first record 
from the output topic

Asserts the key-value pair 
matches the expected order

Retrieves the 
state store from 
the topology

Validaties the store contents 
match the latest output
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To validate the contents of a state store, TopologyTestDriver provides a getKeyValue-
Store method allowing you to retrieve a KeyValueStore by name, which you do here,
and validate the contents match the latest records output.

TIP The TopologyTestDriver provides several methods for retrieving store
types, session, window, and timestamped stores. For the cases where you
haven’t named the store, Kafka Streams generates its name; the getAllState-
Stores method returns a Map of the stores. From there, you can iterate over
the entries and extract the store.

To conclude the test, you pipe in many records in random order. Since you’ve already
validated that everything gets processed in order, you want to verify that the total final
output matches your expectations. But since you just input a bunch of random
records, you’ll need a way to get the final result for each key.

Map<String, Double> allOutput = outputTopic.readKeyValuesToMap();   
    assertThat(allOutput.get("Neil"), is (252.43));
    assertThat(allOutput.get("Anna"), is (185.75));
    assertThat(allOutput.get("Matthias"), is (180.8));

    assertThat(kvStore.get("Anna"), is(185.75));        
    assertThat(kvStore.get("Matthias"), is(180.8));
    assertThat(kvStore.get("Neil"), is(252.43));

To get the last output per key, you use TestOutputTopic.readKeyValuesToMap, which
presents a final table view of the results where more recent entries update and replace
previous ones. If you want to inspect each result separately, you will use one of the
TestOutputTopic.readXXXToList methods.

NOTE With the built-in Kafka Steams aggregations, don’t feel compelled to
test the contents of a store. However, I recommend validating the store’s con-
tents for Kafka Streams applications involving a state store with the Processor
API. I’ve provided this example to show how you can do it.

You just learned how to test a stateful application. Let’s move on to testing an application
where the timestamps of the records drive the behavior with a test for the Stock-
PerformanceApplication from chapter 10. For a quick review, StockPerformance-
Application only emits records after a punctuation call scheduled to run every 10
seconds based on stream time. That means the punctuation only executes when
stream time advances due to the timestamps of the records. To drive this punctuation
behavior, you’ll need to provide the corresponding timestamps, as in the following list-
ing from the test bbejeck.chapter_9.StockPerformanceApplicationTest (some details
are omitted for clarity).

 

Listing 14.18 Retrieving the last output for inputs

Gets the latest
record for each key

Validates the final 
state of the store
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d 
try (TopologyTestDriver driver = new TopologyTestDriver(topology)) {

inputTopic.pipeInput("ABC", transactionOne, instant);   
inputTopic.pipeInput("ABC", transactionTwo,
                            instant.plus(15, ChronoUnit.SECONDS));   
inputTopic.pipeInput("ABC", transactionThree,
                            instant.plus(25, ChronoUnit.SECONDS));   

// punctuation should fire three times
assertThat(outputTopic.getQueueSize(), is(3L));

So, to drive the timestamp behavior, you use the TestInputTopic.pipeInput method
that accepts the following parameters: a key, value, and a timestamp for the record
represented as a java.time.Instant. Providing these timestamps with a forward time
setting will move the stream time appropriately for Kafka Streams to perform the
expected correct number of punctuations. Here, we validate the current number of
times Kafka Streams executed a punctuate call by verifying the number of records in
the internal queue of the TestOutputTopic.

TIP For Kafka Streams applications with punctuation based on wallclock
time, you’ll have to explicitly move the internal wallclock time of Topology-
TestDriver with the advanceWallClockTime(Duration advanceAmount)
method. We discussed wallclock time in a previous chapter.

You should note that the pipeInput method accepting a timestamp parameter
advances stream time tracked by the TopologyTestDriver and does not advance the
internal event time of the TestInputTopic. To understand what this means is that if
you provide another record to TestInputTopic without explicitly providing a time-
stamp, that record’s event time will be the initial timestamp of TestInputTopic when
you created it in this case, as when you provide a record without an explicit time-
stamp, it uses the current event time of the topic. To advance the event time of the
input topic, you’d take an approach like in the following listing.

inputTopic.pipeInput("ABC", transactionOne);
inputTopic.advanceTime(Duration.ofSeconds(15));   
inputTopic.pipeInput("ABC", transactionTwo);
inputTopic.advanceTime(Duration.ofSeconds(25));   
inputTopic.pipeInput("ABC", transactionThree);

This example provides the same behavior for the test and validates Kafka Streams per-
forming three punctuations. Which approach should you use? The answer to that
depends on how you structure your test. If you provide a small number of records,

Listing 14.19 Providing timestamps to drive stream-time behavior

Listing 14.20 Providing timestamps by advancing the event time of the input topic

Passes in the first recor
with the current time

Adds 15 seconds for the 
second record passed in

Pipes in a final
record advancing

time by 25 seconds

Advances the event time of 
the topic by 15 seconds

Another advance of event 
time by 25 seconds
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manually setting each timestamp is ideal, as you can see the timestamp for each
record. However, if you have a test where you want to generate a large number of
inputs, it could be cumbersome to set a timestamp for each record, so advancing the
event time of TestInputTopic at various intervals would be more effective in that case.

 Before we wrap up our coverage of the TopologyTestDriver, we have one more
example to cover regarding timestamps on records—when you have windowed Kafka
Streams applications. For this example, you’ll look at a test for the bbejeck.chapter_9
.window.StreamsCountTumblingWindowSuppressedEager application, which does a
windowed count of incoming records where the window size is 1 minute with no
grace period.

 When you have a windowed operation with suppression, Kafka Streams will not
emit a result until the window closes. You must input records with timestamps moving
stream time forward to validate the results. To do window stream time advancement,
you’ll take a similar approach to what you did with the punctuation test found in
bbejeck.chapter_9.window.StreamsCountTumblingWindowSuppressedEagerTest.

Stream.generate(() -> "Foo").limit(10)
            .forEach(item ->
➥ inputTopic.pipeInput(item, item));           
assertThat(outputTopic.getQueueSize(), is(0L));    
inputTopic.pipeInput("Foo", "Foo",
    instant.plus(75, ChronoUnit.SECONDS));        
assertThat(outputTopic.readValue(), is(10L));  

For this test, you first generate 10 records, input them into the topology, and assert
that Kafka Streams has not emitted anything by validating that the queue of the out-
put topic is empty. You then add another record and explicitly set its timestamp to 1
minute 15 seconds in the future. Since you have set the application window to 1 min-
ute, you should observe Kafka Streams forward the count of all events by key from the
previous window with a count of 10.

NOTE This approach of setting forward timestamps to move stream time is
the way to test any windowed Kafka Streams application.

So far, you’ve learned about unit testing for Kafka producer and consumer clients and
testing a Kafka Streams application without needing a live broker. But unit testing and
not using a broker is only part of the picture. Some of your tests should include a live
Kafka broker; we’ll cover that next in our final section.

14.1.5 Developing effective integration tests

For developing an integration test for Kafka Streams, the main difference you’ll
notice is the extra code needed to interact with a live broker. Additionally, you’ll have

Listing 14.21 Setting timestamps to emit suppressed windowed results

Generates 10 
input records

Validates no 
emitted records

Adds a new input record 
and advances stream time

Asserts the window emitted
the correct count
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to account for how Kafka Streams works as a live application, especially when you have
a stateful operation due to the caching behavior. You’ll still write a JUnit 5 test, but it
will operate slightly differently, mainly due to the time it takes to start the broker,
which is where we’ll start.

 You will use TestContainers to provide a Kafka broker for the integration tests.
Testcontainers (https://www.testcontainers.org/) is a Java library allowing access to
external components running in Docker containers directly in your JUnit tests. I
assume you are familiar with Docker, but for more information, go to the Docker web-
site: https://www.docker.com/.

NOTE Testcontainers for Kafka in JUnit 5 tests require the following dependen-
cies: org.testcontainers:junit-jupiter:1.17.1 and org.testcontainers
:kafka:1.17.1. The source code for the book already does this, but I’m add-
ing this here for your information.

Let’s begin your integration testing by creating a test for the bbejeck.chapter_9
.window.StreamsCountHoppingWindow application. The Testcontainers library pro-
vides annotations that you’ll use to annotate your code that will handle the lifecycle of
your Kafka Docker container. Let’s start building the test now.

@Testcontainers                                  
class StreamsCountHoppingWindowIntegrationTest {

@Container                                    
private static final KafkaContainer kafka =
   new KafkaContainer(
        DockerImageName.parse("confluentinc/cp-kafka:7.5.1"));   

You first create the test class StreamsCountHoppingWindowIntegrationTest and add
@Testcontainers at the class level. The @Testcontainers annotation is a JUnit Jupi-
ter extension, and it automatically manages the lifecycle for any containers in the test
by finding any fields with a @Container annotation. You can see the @Container here
annotating the KafkaContainer field. When you define the field as static, the con-
tainer is shared with all test methods, meaning it starts before the first test and shuts
down after the last test completes.

 If you define the container field as nonstatic, the container starts and stops for
each test. Unless you have a specific reason for stopping and starting a container
for each test, I’d recommend using the static field approach, as this will save a few
CPU cycles by only starting and stopping the container once.

 You create the KafkaContainer instance by passing a DockerImageName object, which
you make by passing in a string in the standard Docker format (registry/name:tag).

Listing 14.22 Integration test with Testcontainers annotations

Adds the @Testcontainers 
annotation to the class 
declaration

Specifies the Kafka 
container for the test

Creates the KafkaContainer
as a static field in the test

https://www.testcontainers.org/
https://www.docker.com/
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NOTE I’m not going to cover Docker, but you can learn more about it in the
Manning books Docker in Practice, by Ian Miell and Aidan Hobson Sayers
(2019), and Docker in Action, by Jeff Nickoloff and Stephen Kuenzli (2019).

You’ve now set up the Kafka Docker container for the test! What’s left is for us to dis-
cuss the elements you’ll need for running the Kafka Streams application in the test.
Since Kafka Streams gets its input from topics and produces the final results to a Kafka
topic, you’ll need a KafkaProducer to feed a topic for the test and a KafkaConsumer to
help validate the test results. Let’s take a look at the details you need to put together
(some details are omitted for clarity).

@BeforeEach
 public void setUp() {      

    streamsCountHoppingWindow = new StreamsCountHoppingWindow();
    kafkaStreamsProps.put("bootstrap.servers",
              kafka.getBootstrapServers());                          

     kafkaStreamsProps.put(StreamsConfig.APPLICATION_ID_CONFIG,
              "hopping-windows-integration-test");

    //Producer configs
    producerProps.put("bootstrap.servers",
              kafka.getBootstrapServers());                          
    producerProps.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,
                       StringSerializer.class);
    producerProps.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,
                      StringSerializer.class);

    //Consumer configs
    consumerProps.put("bootstrap.servers",
               kafka.getBootstrapServers());                         
    consumerProps.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,
                              StringDeserializer.class);
    consumerProps.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,
                              LongDeserializer.class);
    consumerProps.put(ConsumerConfig.GROUP_ID_CONFIG,
                             "integration-consumer");
    consumerProps.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG,
                             "earliest");

    Topics.create(kafkaStreamsProps,
                  streamsCountHoppingWindow.inputTopic,
                  streamsCountHoppingWindow.outputTopic);     

In the test setUp method, you set all the required configurations for Kafka Streams,
producer, and consumer clients. You won’t directly create a KafkaProducer and
KafkaConsumer in the test, relying instead on some static helper methods to produce

Listing 14.23 Setting the test up with producer and consumer configurations

Setup method executed 
before each test

Sets the bootstrap.servers
config for the clients

Creates the 
required 
topics
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and consume records as needed in the test, and I’ll cover those methods soon. The
last bit of code in the setUp method creates the required topics. There’s a correspond-
ing method, tearDown, executed after each test completes as well.

@AfterEach
public void tearDown() {
    Topics.delete(kafkaStreamsProps,
                  streamsCountHoppingWindow.inputTopic,
                  streamsCountHoppingWindow.outputTopic);
}

The tearDown method deletes all the topics created before the test runs. It’s essential
to follow this practice of creating and deleting topics for each test, ensuring we have a
clean starting point so the results aren’t affected by the running of a previous test. To
create and delete topics, we use the utility class bbejeck.utils.Topics provided in
the book’s source code.

 Now, let’s get to the heart of the integration test. Since the Kafka Streams applica-
tion under test, StreamsCountHoppingWindow, uses hopping windows (windows that
have an advance smaller than the window size) with a length of 1 minute and an
advance of 10 seconds, you’d like to provide values in such a way that you can see the
overlap of each window advance. That means each time the window moves forward by
10 seconds, the count includes previous results until the window size is reached. You’ll
see the count start to decline. Figure 14.5 shows what we want our test to validate.

NOTE Since I’ve covered Kafka Streams windowing in a previous chapter, I
will only focus on details relevant to the test.

Now that you have all the setup details complete, let’s get to writing the test itself.
 

Listing 14.24 The teardown method that runs after each test

One-minute window

Populate a topic with records
having timestamps that
fill the window's last 2/3.

Each window advance has significant
overlap of results from previous window.

Figure 14.5 The integration test for a hopping window count should increase up 
to the window size and then start declining.
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@Test
@DisplayName("Integration test for hopping window")
void shouldHaveHoppingWindowsTest() {
    final Topology topology =
         streamsCountHoppingWindow.topology(kafkaStreamsProps);   
    AtomicBoolean streamsStarted = new AtomicBoolean(false);
    try (KafkaStreams kafkaStreams =
            new KafkaStreams(topology, kafkaStreamsProps)) {
        kafkaStreams.cleanUp();
        kafkaStreams.setStateListener((newState, oldState) -> {  
            if (newState == KafkaStreams.State.RUNNING) {
                streamsStarted.set(true);
            }
        });
        kafkaStreams.start();          
        while (!streamsStarted.get()) {     
            time.sleep(250);
        }

In the test method, you create the KafkaStreams instance, and before starting, you set
a StateListener for when Kafka Streams goes into a RUNNING state; that way, we
can wait to start the test until Kafka Streams is ready for work. While this step is not
required, I prefer to start the test once that application is in a known state.

 Now let’s move on to producing input for Kafka Streams to work with.

long startTimestamp = Instant.now().toEpochMilli();  
for (int i = 1; i <= 6; i++) {
  List<KeyValue<String, String>> list =
  Stream.generate(() ->
           (KeyValue.pair("Foo", "Bar"))).limit(i).toList();   
  TestUtils.produceKeyValuesWithTimestamp(           
            streamsCountHoppingWindow.inputTopic,
            list,
            producerProps,
            startTimestamp,
            Duration.ofMillis(100L));
  startTimestamp += 10_000;          
}

Here, you’re using the helper method TestUtils.produceKeyValuesWithTimestamp
from the book’s source code that takes care of all the details of producing a message
to Kafka for the StreamsCountHoppingWindow to process. For each iteration, we send
the number of records matching the loop index and increment the timestamp by 10
seconds to ensure the next batch of records produced will end up in the next window
advance. We expect each advance to include the sum of the previous records up to the
window size boundary, and then we should see the count start declining as records age
off. To test our expectations, we add the following code to the test.

Listing 14.25 Writing the test for a hopping window Kafka Stream application

Listing 14.26 Producing records for the Kafka Streams application
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List<KeyValue<String, Long>> expectedKeyValues =
    List.of(KeyValue.pair("Foo", 1L),
    KeyValue.pair("Foo", 3L),
    KeyValue.pair("Foo", 6L),
    KeyValue.pair("Foo", 10L),
    KeyValue.pair("Foo", 15L),
    KeyValue.pair("Foo", 21L),   
    KeyValue.pair("Foo", 20L),
    KeyValue.pair("Foo", 18L),
    KeyValue.pair("Foo", 15L),
    KeyValue.pair("Foo", 11L),
    KeyValue.pair("Foo", 6L));

List<KeyValue<String, Long>> actualConsumed =
     TestUtils.readKeyValues(streamsCountHoppingWindow.outputTopic,   
                    consumerProps,
                    45_000,                
                    12);   
assertThat(actualConsumed, equalTo(expectedKeyValues));    

So, we create an expected list where the count increments by the number of records
sent plus the previous count (1 + 2 + 3 + 4 . . .). Then, we use another utility method to
consume from the topic and return the results to the test to assert the results match
our expectations of the application output. When running this test, it should pass
every time. The main points of this section are to first create an expected result for
comparison and use utility helper methods that facilitate reuse across the different
integration tests. I haven’t included examples of integration testing for the producer
and consumer classes. Still, you’d follow the same pattern: create a test class with the
@Testcontainer annotation and a @Container field in the class and use the helper
methods for producing and consuming to drive the test. Examples of these integra-
tion tests are in the source code for the book.

Summary
 Testing is a critical part of development, and tests should correspond to each

piece of the application to a reasonable level.
 Unit tests should make up most of your testing strategy, but you’ll still need to

include integration tests to ensure everything works together as expected.
 Using the MockProducer and MockConsumer is practical for performing test-

ing of client applications without requiring the use of a live Kafka broker.
 It’s best to write your Kafka Streams operators map, filter, punctuators, etc., as

concrete instances that allow you to write isolated tests for each component.

Listing 14.27 Setting an expected list of records we expect Kafka Streams to produce

The max window 
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is reached.

Utility method to
consume results
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results match the

expected ones
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 To validate their expected behavior, you should perform unit tests for the vari-
ous mappers, aggregators, and punctuators for Kafka Streams applications.
Still, you can also use the TopologyTestDriver to test your entire topology with-
out needing a live Kafka broker.

 The TopologyTestDriver provides for creating TestInputTopic and Test-
OutputTopic instances, which you’ll use to run records through the topology
and then capture the results, respectively.

 When testing a Kafka Streams application with the TopologyTestDriver, you
may need to provide timestamps to ensure windows advance.

 For your integration tests, you should use Testcontainers to provide the Kafka
broker for the test, as it takes care of getting the container and managing the
container lifecycle for you.

 By default, using the JUnit 5 Testcontainers extension will spin up a new con-
tainer for each test, which can be expensive timewise. Consider making the
Testcontainers field static, and you’ll only start one container for all tests in the
test class.



appendix A
Schema compatibility

workshop

In this appendix, you’ll take a guided walkthrough of updating schemas in differ-
ent compatibility modes. You’ll change the schemas compatibility mode, make
changes, test those changes, and finally run updated producers and consumers to
see the different compatibility modes in action. I’ve already made all the changes.
You only need to read along and run the provided commands. There are three sub-
projects: sr-backward, sr-forward, and sr-full. Each subproject contains producers,
consumers, and schemas updated and configured for the representative compati-
bility mode. 

NOTE There is a lot of overlap between the code and the build.gradle files
between the subprojects. This overlap is intentional, as I wanted each mod-
ule isolated. The focus of using these modules is learning about evolving
schemas in Schema Registry and the related changes you need to make to
Kafka producers and consumers, not how to set up the ideal Gradle project!

In this section, I’ll discuss how Schema Registry ensures client compatibility. For
schema compatibility rules of the serialization frameworks, you’ll want to look at
each one specifically. Avro schema resolution rules are available at http://mng.bz/
ngE2. Protobuf provides backward compatibility rules in the language specification
found at http://mng.bz/v8r4.

 Let’s go over the different compatibility modes now. For each compatibility
mode, you’ll see the changes made to the schema and run a few steps needed to
migrate a schema successfully.
412

http://mng.bz/ngE2
http://mng.bz/ngE2
http://mng.bz/v8r4


413A.1 Backward compatibility
 For clarity, each schema migration for the different compatibility modes has its
own Gradle submodule in the book source. I did this as each changing Avro schema
file results in different Java class structures when you build the code. Instead of having
you rename files, I opted for a structure where each migration type can stand inde-
pendently. In a typical development environment, you will not follow this practice.
You’ll modify the schema file, generate the new Java code, and update the producers
and consumers in the same project.

 All schema migration examples will modify the original avenger.avsc schema file.
The following listing provides the original schema file for reference so it’s easier to see
the changes made for each schema migration. 

{
  "namespace": "bbejeck.chapter_3.avro",
  "type": "record",
  "name": "AvengerAvro",
  "fields": [
    {"name": "name", "type": "string"},
    {"name": "real_name", "type": "string"},
    {"name": "movies", "type":
                      {"type": "array", "items": "string"},
      "default": []
    }
  ]
}

NOTE For working through schema evolution and the compatibility types,
I’ve created three submodules in the source code, sr-backward, sr-forward,
and sr-full. These submodules are self-contained and intentionally contain
duplicated code and setup. The modules have updated schemas, producers,
and consumers for each type of compatibility mode. I did this to make the
learning process easier, as you can look at the changes and run new examples
without stepping on the previous ones. 

A.1 Backward compatibility
Backward compatibility is the default migration setting. With backward compatibility,
you update the consumer code first to support the new schema. The updated consum-
ers can read records serialized with the new or immediate previous schema (figure A.1). 

 As shown in figure A.1, the consumer can work with the previous and the new
schemas. The allowed changes with backward compatibility are deleting fields or add-
ing optional fields—an optional field is when the schema provides a default value. If
the serialized bytes don’t contain the optional field, then the deserializer uses the
specified default value when deserializing the bytes back into an object.

 Before we get started, let’s run the producer with the original schema. That way,
after the next step, you’ll have records using both the old schema and the new one,

Listing A.1 The original Avenger Avro schema
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and you’ll be able to see backward compatibility in action. Make sure you’ve started
docker with docker-compose up -d and then run the following commands.

./gradlew streams:registerSchemasTask      

./gradlew streams:runAvroProducer    

Now, you’ll have records with the original schema in the topic. When you complete
the next step, having these records available will clarify how backward compatibility
works, as the consumer can accept records using the old and the updated schema. So,
let’s update the original schema by deleting the real_name field and adding a powers
field with a default value. 

NOTE You’ll find the schema file and code in the sr-backward sub-module in
the src/main/avro directory in the source code. 

{
  "namespace": "bbejeck.chapter_3.avro",
  "type": "record",
  "name": "AvengerAvro",
  "fields": [
    {"name": "name", "type": "string"},
    {"name": "powers", "type":                       
                      {"type": "array", "items": "string"},
      "default": []           
    },

Listing A.2 Producing records with the original schema

Listing A.3 Backwards compatible updated schema

Producer upgraded
to use the
latest schema

Topic on broker

Backward compatibility

All Consumers upgraded
to use the latest schema

With backward compatibility,
consumers use the
new schema and
can handle records produced
with either the current schema
or the previous one.

Producer using
the previous schema

Figure A.1 Backward compatibility updates consumers first to use the new schema. 
Then, they can handle records from producers using either the new schema or the 
previous one.

Makes sure you’ve registered the 
original avengers.avsc schema

Runs a producer with the original schema

The powers field 
replaces the deleted 
real_name field.

Provides a default value of an empty 
powers list for backward compatibility
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    {"name": "movies", "type":
                      {"type": "array", "items": "string"},
      "default": []
    }
    ]
}

Now that you have updated the schema, you’ll want to test its compatibility before
uploading it to Schema Registry. Fortunately, testing a new schema is a simple process.
You’ll use the testSchemasTask in the sr-backward module from the Gradle plugin for
testing compatibility. So, let’s test the compatibility first by running this command
from the root of the project. 

./gradlew :sr-backward:testSchemasTask

WARNING To run the example successfully, you need to run the command
exactly as it’s displayed here, including the leading : character.

The result of running the testSchemasTask should be BUILD SUCCESSFUL, which means
that the new schema is backward compatible with the existing one. The testSchemas-
Task calls Schema Registry to compare the proposed new schema against the current
one to ensure it’s compatible. Now that we know the new schema is valid, let’s go
ahead and register it with the following command. 

./gradlew :sr-backward:registerSchemasTask

Running the register command prints a BUILD SUCCESSFUL on the console. Before we
move on to the next step, let’s run a REST API command to view the latest schema for
the avro-avengers-value:

curl -s "http://localhost:8081/subjects/avro-avengers-value/
  versions/latest" | jq '.'

Running this command should yield results resembling the following:

{
  "name" : "avro-avengers-value",
  "version" : 2,
  "schema" : "{\"type\": \"record\", \"namespace\": \"bbejeck.chapter_3\",
    \"name\": \"AvengerAvro\"..."
}

The results show the increase in the version from 1 to 2 as you’ve loaded a new schema.
With these changes in place, you’ll need to update your clients, starting with the

Listing A.4 Testing whether a new schema is backward compatible

Listing A.5 Registering the new schema
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consumer. With the compatibility of BACKWARD, you want to update the consumer first
to handle any records produced using the new schema. 

 For example, you initially expected to work with the real_name field, but you
deleted it in the schema, so you want to remove references to it in the new schema.
You also added the powers field, so you’ll want to be able to work with that field. That
also implies you’ve generated new model objects. 

 Earlier, when you ran the clean, build command, it generated the correct objects
for all modules. So, you should not have to do that now. 

 Note that since we are in BACKWARD compatibility mode, it wouldn’t blow up if your
updated consumer were to consume in the previous format. The update ignores the
real_name field, and the powers field uses the default value. 

 After you have updated the consumer, you’ll want to update your producer appli-
cations to use the new schema. The AvroProducer in the sr-backward submodule has
had the updates applied already. Now run the following command to producer records
using the new schema. 

./gradlew :sr-backward:runAvroProducer

You’ll see some text scroll followed by the familiar BUILD SUCCESSFUL text. If you
remember, you ran the produce command from the original submodule just a few
minutes ago, adding records in the previous schema. So now that you’ve run the pro-
ducer using the new schema, you have a mix of old and new schema records in the
topic. But our consumer example should be able to handle both types since we are in
the BACKWARDS compatibility mode. 

 Now, when you run the consumer, you should be able to see the records produced
with the previous schema and those produced with the new schema. Run the follow-
ing command to execute the updated consumer.

./gradlew :sr-backward:runAvroConsumer

You should see the first results printing with powers [] in the console. The empty value
indicates those older records using the default value since the original records did not
have a powers field on the object. 

NOTE For this first compatibility example, your consumer reads all the
records in the topic. This happened because we used a new group.id for the
consumer in the sr-backward module, and we’ve configured it to read from
the earliest available offset if none were found. We’ll use the same group.id
for the rest of the compatibility examples and modules, and the consumer
will only read newly produced records. Chapter 4 contains the details for the
group.id configuration.

Listing A.6 Producing records with the new schema

Listing A.7 Consuming records against the new schema
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A.2 Forward compatibility
Forward compatibility is a mirror image of backward compatibility regarding field
changes. With forward compatibility, you can add fields and delete optional ones.
Let’s go ahead and update the schema again, creating avenger_v3.avsc, which you can
find in the sr-forward/src/main/avro directory. 

{
  "namespace": "bbejeck.chapter_3.avro",
  "type": "record",
  "name": "AvengerAvro",
  "fields": [
    { "name": "name", "type": "string" },
    { "name": "powers", "type": {
               "type": "array", "items": "string"},
            "default": []
    },
    {"name": "nemeses","type": {                  
              "type": "array", "items": "string"
      }
    }
  ]
}

In this new schema version, you’ve removed the movies field, which defaults to an
empty list, and added a new field nemeses. In forward compatibility, you would upgrade
the producer client code first (figure A.2).

Upgrading the producer code first ensures the new fields are correctly populated, and
only records in the new format are available. Consumers you need to upgrade can still

Listing A.8 Foward compatible Avenger schema

Adds a new 
field, nemeses

All Producers upgraded
to the latest schema

Topic on broker

Forward compatibility

Consumer upgraded to
use the latest schema

Consumer using previous
schema

With forward compatibility,
consumers using either the
new schema or the previous
one can handle records
written with the new
schema.

Figure A.2 Forward compatibility updates producers first to use the new schema, and 
consumers can handle the records either the new schema or the previous one.
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work with the new schema as they will simply ignore the new fields, and the deleted
fields have default values.

 Now you must change the compatibility mode from BACKWARD to FORWARD. In the
sr-forward sub-module, the configuration for the Schema Registry plugin has the fol-
lowing code section, setting the compatibility.

config {
        subject('avro-avengers-value', 'FORWARD')
    }

Now, with the configuration set, to change the compatibility mode, run the following
command.

./gradlew :sr-forward:configSubjectsTask

As we’ve seen before, the result of this command produces a BUILD SUCCESSFUL result
on the console. If you want to confirm the compatibility mode for your subject, you
can use this REST API command.

curl -s "http://localhost:8081/config/avro-avengers-value" | jq '.'

The jq at the end of the curl command formats the returned JSON, and you should
see something like the following code listing.

{
     compatibility: FORWARD
  }

Now that you have configured the avro-avengers-value subject with forward compatibil-
ity, go ahead and test the new schema by running the command in the following listing.

./gradlew :sr-forward:testSchemasTask

This command should print a BUILD SUCCESSFUL on the console, and then you can reg-
ister the new schema.

./gradlew :sr-forward:registerSchemasTask

Listing A.9 Compatibility in build.gradle for sr-forward submodule

Listing A.10 Changing the compatibility mode to FORWARD

Listing A.11 REST API to view configured compatibility mode for a subject

Listing A.12 Formatted configuration response

Listing A.13 Testing a new schema is forward-compatible

Listing A.14 Registering the new forward-compatible schema
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Then run a producer already updated to send records in the new format with the
command.

./gradlew :sr-forward:runAvroProducer

Now that you’ve run the producer with an updated schema, let’s run the consumer
that is not updated.

./gradlew :sr-backward:runAvroConsumer

The command results show how, with forward compatibility, even if the consumer is
not updated, it can still handle records written using the new schema. Now we need to
produce some records again for the updated consumer.

./gradlew :sr-forward:runAvroProducer

Now run the updated consumer for the new schema.

./gradlew :sr-forward:runAvroConsumer

In both cases, the consumer runs successfully, but the details in the console are differ-
ent due to having upgraded the consumer to handle the new schema.

 Now, you’ve seen two compatibility types: backward and forward. As the compati-
bility name implies, you must consider record changes in one direction. In backward
compatibility, you updated the consumers first, as records could arrive in either the
new or old format. In forward compatibility, you first updated the producers to ensure
the records from that time are only in the new format. The last compatibility strategy
to explore is the FULL compatibility mode. 

A.3 Full compatibility
You can add or remove fields in full compatibility mode, but there is one catch. Any
changes you make must be to optional fields only (figure A.3). 

 Since the fields in the updated schema are optional, these changes are compatible
with existing producer and consumer clients. This means that the upgrade order, in
this case, is up to you. Consumers will continue to work with records produced with
the new or old schema. Let’s take a look at a schema to work with FULL compatibility.

 
 

Listing A.15 Running the producer updated for records in the new schema format

Listing A.16 Running a consumer not yet updated for the new schema changes

Listing A.17 Running the producer again

Listing A.18 Running the consumer updated for the new schema
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{
  "namespace": "bbejeck.chapter_3.avro",
  "type": "record",
  "name": "AvengerAvro",
  "fields": [
    { "name": "name", "type": "string" },
    { "name": "yearPublished", "type": "int", "default": 1960 },   
    { "name": "realName", "type": "string", "default": "unknown" },   
    { "name": "partners", "type": {
                          "type": "array","items": "string"},  
               "default": []
    },
    {"name": "nemeses", "type": {
                        "type": "array", "items": "string"},
             "default": []
    }
  ]
}

Before you update the schema, let’s produce a set of records one more time to have a
batch of records in the format before our next schema change.

./gradlew :sr-forward:runAvroProducer

This will give us a batch of records to read with an updated consumer. But first, let’s
change the compatibility, this time to FULL.

./gradlew :sr-full:configSubjectsTask

Listing A.19 Full compatibility schema avengers_v4.avsc

Listing A.20 Creating a batch of records before we migrate the schema.

Listing A.21 Changing the compatibility to FULL

Producer upgraded
to the latest schema

Producer using
older schema

Topic on broker

Full compatibility

Consumer upgraded to
use the latest schema

Consumer using older
schema

With full compatibility,
consumers can handle
records written with
either the new or
previous schema.

Figure A.3 Full compatibility allows producers to send with the previous or new schema, 
and consumers can handle the records with either the new schema or the previous one.

Adds new optional
field yearPublished

Adds back
optional field

realName

Adds
new field
partners
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To keep consistent with our process, let’s test the compatibility of the schema before
we migrate it.

./gradlew :sr-full:testSchemasTask

With the migrated schema compatibility tested, let’s go ahead and register it.

./gradlew :sr-full:registerSchemasTask

With the new schema version registered, let’s have some fun with the order of records
we produce and consume. Since all schema updates involve optional fields, the order
in which we update the producers and consumers doesn’t matter.

 A few minutes ago, I had you create a batch of records in the previous schema for-
mat. I did that to demonstrate that we can use an updated consumer in FULL compatibil-
ity mode to read older records. Remember, before, with FORWARD compatibility, it was
essential to ensure the updated consumers would only see records in the new format. 

 Let’s run an updated consumer to read records using the previous schema. But
watch what happens after running the following command. Now run the updated con-
sumer, as in the following listing.

./gradlew :sr-full:runAvroConsumer

And it runs just fine! Now, let’s flip the order of operations and run the updated
producer.

./gradlew :sr-full:runAvroProducer

And now you can run the consumer that we haven’t updated yet for the new record
format.

./gradlew :sr-forward:runAvroConsumer

As you can see from playing with the different versions of producers and consumers
with FULL compatibility when you update the producer and consumer, it is up to you;
the order doesn’t matter. 

Listing A.22 Testing the schema for full compatibility

Listing A.23 Registering the FULL compatibility schema

Listing A.24 Consuming with the updated consumer

Listing A.25 Producing records with the new schema

Listing A.26 Consuming new records with a consumer not updated
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Confluent resources

B.1 Confluent Cloud
Confluent Cloud is a resilient, scalable, streaming data service based on Apache
Kafka®, delivered as a fully managed service. Confluent Cloud allows you to quickly
scale up a Kafka cluster without consuming any resources on your laptop. Com-
bined with the Confluent command-line interface (CLI), you can quickly and easily
spin up a cluster, create and delete topics, and enable Schema Registry. You can
also take the latest product from Confluent, Flink SQL, for a spin. 

 Readers of this book can try Confluent Cloud out for free with the code
“KAFKASTREAMSBOOK”, which gives you $100 in free credit. You can find Con-
fluent Cloud at https://www.confluent.io/confluent-cloud/.

B.2 Confluent command-line interface
The Confluent CLI interface is a powerful tool that makes working with Confluent
Cloud very easy. You can create and delete clusters and consume from and produce
to topics from the command line. To install the CLI tool, users of macOS or Linux
can use the command brew install confluentinc/tap/cli, but all major operating
systems are supported. Go to http://mng.bz/KZMZ for complete instructions on
the different options available for installing the CLI. 

 You also can extend the behavior of the CLI with plugins. There’s an official
Confluent plugin repository at https://github.com/confluentinc/cli-plugins. You
can find available plugins to install by running confluent plugin search. For exam-
ple, you can use the kickstart plugin confluent cloud kickstart, and it will automati-
cally provision a Kafka cluster, enable Schema Registry, create API keys, and generate
the required client-connection properties file for you. You can run confluent cloud
kickstart -h to see all available options. 
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B.3 Confluent local
The CLI also has the option to run a Docker-based Kafka broker locally (http://mng
.bz/9dMo) with the command confluent local kafka start. This command will pull a
Kafka Docker image and start it. You must have Docker and Docker Desktop installed
to do so. 

http://mng.bz/9dMo
http://mng.bz/9dMo
http://mng.bz/9dMo


appendix C
Working with

Avro, Protobuf,
and JSON Schema

C.1 Apache Avro
An Avro schema is composed of two main types: primitive and complex. The sup-
ported primitive types are null, boolean, int, long, float, double, bytes, and string.
Complex types are records, enums, arrays, maps, unions, and fixed. For a complete
description of primitive and complex types, see the Avro documentation at http://
mng.bz/Y7Oo and http://mng.bz/GZ2M, respectively. 

 In this book, you’ll mostly work with the complex type of record as this corre-
sponds to an object. You may also encounter a few examples using primitive values,
but for the most part, we’ll stick with records. You’ll also use the union type, espe-
cially when working with the RecordNameStrategy and TopicRecordName strategies.
The union type is represented as an array and is very useful. unions allow you to spec-
ify that a field may be of one or more types. You’ll see union types in the following
examples. 

 The record type contains the elements name, doc, aliases, and fields. The fields
element can have the properties name, type, doc, default, order, and aliases. Fig-
ure C.1 shows an Avro schema with some descriptions of what each of these proper-
ties is. 

 By default, when serializing records, Avro encodes fields in the listed order of
the schema. Next, I want to discuss the default and aliases from the previously
mentioned properties.
424

http://mng.bz/Y7Oo
http://mng.bz/Y7Oo
http://mng.bz/GZ2M


425C.1 Apache Avro
C.1.1 Default and alias

The default property is essential as it provides a field value if it’s missing when deseri-
alizing an Avro encoded object. In other words, supplying a default value in Avro is
the same as saying the field is optional. With regard to compatibility, optional values
factor heavily in whether a schema is backward- or forward-compatible. 

 An alias refers to the name of a previous schema you want to use for the current
schema. This means that if you evolve a schema named event to event_v2, but you speci-
fied an alias of event for the new schema, that means readers of the new schema will read
it as if it were named event. The same is true of a field with an alias. Specifying aliases of
the expected name in the old schema will cause the reader to use the alias name. An alias
is useful if you’ve updated a field name but want the new schema to remain backward-
compatible for existing downstream users expecting the previous field name. 

C.1.2 Union

I mentioned the union type as an important concept with Avro schemas. A union allows
you to specify that a field can be of one of more than one type. First, consider the fol-
lowing basic example: 

{
  "type": "record",
  "namespace": "bbejeck.chapter_3",
  "name": "transaction",

{
"type": "record",
"namespace": "bbejeck.chapter_3.nested"
"name": "Transaction",
"fields" : [

{"name": "txn_type", "type": [
{

"type":"record",
"namespace": "bbejeck.chapter_3.nested",
"name":"Purchase",
"fields": [

{"name": "item", "type":"string"},
{"name": "amount", "type": "double"}

]
},
{

"type":"record",
"namespace": "bbejeck.chapter_3.nested",
"name":"Return",
"fields": [

{"name": "item", "type":"string"},
{"name": "amount", "type": "double"}

]
},
{

"type":"record",
"namespace": "bbejeck.chapter_3.nested",
"name":"Exchange",
"fields": [

{"name": "item", "type": "string"},
{"name": "amount", "type": "double"},
{"name": "new_item", "type": "string"}

]
}

]},
{"name": "identifier", "type": "long"}

]
}

{
"type": "record",
"namespace": "bbejeck.chapter_3"
"name": "Transaction",
"fields" : [
{"name": "txn_type", "type": [

"bbejeck.chapter_3.Purchase",
"bbejeck.chapter_3.Return",
"bbejeck.chapter_3.Exchange"

]},
{"name": "identifier", "type": "long"}

]
}

Schema using references
is easier to read and will
pick up changes to original
schema.

Schema with full definition
of nested object fields
inline.

Figure C.1 Comparing a schema with nested records vs. using schema references
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  "fields" : [
    {"name": "txn_type", "type": "string"},
    {"name": "identifier", "type": ["string", "long"]}   
  ]
}

This sample schema shows an example of a simple union type. The identifier could
be either a string or a long. But the union type can be more complex and is integral to
working with the RecordNameStrategy or TopicRecordName strategies. 

 For example, let’s extend the example schema to have a record type for the trans-
action. Instead of a string, it could be one of three record types—Purchase, Return or
Exchange. Our schema would look something like this:

{
  "type": "record",
  "namespace": "bbejeck.chapter_3.nested"
  "name": "transaction",

  "fields" : [
    {"name": "txn_type", "type": [        
            {
               "type":"record",
               "namespace": "bbejeck.chapter_3.nested",
               "name":"Purchase",                         
               "fields": [
                    {"name": "item", "type":"string"},
                    {"name": "amount", "type": "double"}
                ]
            },
            {
               "type":"record",
               "namespace": "bbejeck.chapter_3.nested",
               "name":"Return",                         
               "fields": [
                    {"name": "item", "type":"string"},
                    {"name": "amount", "type": "double"}
                ]
            },
            {
               "type":"record",
               "namespace": "bbejeck.chapter_3.nested",
               "name":"Exchange",                     
               "fields": [
                    {"name": "item", "type": "string"},
                    {"name": "amount", "type": "double"},
                    {"name": "new_item", "type": "string"}
               ]
            }

    ]},

    {"name": "identifier", "type": "long"}
  ]
}

Union type for 
the identifier 
field; it can be a 
string or a long.

Start of union 
type as an array

The Purchase 
record type

The Return 
record type

The Exchange 
record type
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The union type can be one of three record types from this example schema. If the
nested types have several fields and possibly contain other union types, you can see
how a union type can quickly get unwieldy. Luckily, Schema Registry now supports
schema references. 

C.2 Protocol Buffers
For cross-language communication, Google developed Protocol Buffers (https://
developers.google.com/protocol-buffers). What exactly are Protocol Buffers? Well,
let’s get the definition straight from the Protocol Buffers home page:

Protocol buffers are Google’s language-neutral, platform-neutral, extensible mechanism
for serializing structured data—think XML, but smaller, faster, and more straightfor-
ward. You define how you want your data to be structured once. You can use generated
source code to quickly write and read your structured data to and from various data
streams and using a variety of languages.

—Protocol Buffers definition from the home page

Since Protocol Buffers aim to be in a language-neutral serialization format, they are
perfect for use with Kafka and Schema Registry. As you can imagine, protocol buffers
are a deep subject, so I will only go into specific details. But in this section, I’ll review
the information you’ll need to start using Protocol Buffers with Schema Registry.

NOTE Currently, versions 2 and 3 of Protocol Buffers are available, with ver-
sion 3 being the latest. In this book, I’m going to focus on version 3. Also,
while Protocol Buffers support different languages, I will focus on using Java.

You’ll need to install the Protobuf compiler on your machine to use Protocol Buffers.
If you are using macOS as I am, you can use homebrew (https://brew.sh/) to install Pro-
tobuf with one line: brew install Protobuf. 

NOTE While command-line tools are available for working with Protobuf, the
source code project for the book is gradle-based. As a result, you’ll use the
Protobuf-gradle-plugin provided by Google (https://github.com/google/
Protobuf-gradle-plugin). 

Protocol Buffers have a concept of a message, the outermost part of the record hierar-
chy. A message will have one or more fields defined inside the message. You’ll write the
schema for a Protocol Buffer message in a file ending with .proto, compared to Avro
where the record schemas come in files ending with .avsc. 

 The fields contained within a message can take the form of a scalar type—long, int,
float, double, boolean,—String and for the Java API, a ByteString, which is analogous
to a byte array in Java. Protocol bBuffers support generating code from the .proto
files. Protobuf also supports complex structures so that messages can contain nested
message types. Let’s look at a basic proto file to cement your understanding of what
we just covered in listing C.1. 

https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://brew.sh/
https://github.com/google/Protobuf-gradle-plugin
https://github.com/google/Protobuf-gradle-plugin
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syntax = "proto3";    

package proto_files;        

option java_package = "bbejeck.chapter_3.proto";   
option java_multiple_files = true;                

message Avenger {                
  string name = 1;
  string real_name = 2;           
  repeated string movies = 3;    
}

The format of a Protobuf schema file is relatively straightforward. There is one thing I
want to point out in this example. I want to emphasize that with Protobuf version 3, all
fields are considered optional.

 When deserializing a message, if a field is missing, then Protobuf uses the default
for the fields’ type. For example, numeric types use 0; a Boolean will use false, and
strings will use an empty string. The default value for missing message fields is lan-
guage dependent, so in the case of Java, it will be null.

 You’ll notice you’ve set the field name equal to a number. Protobuf uses that num-
ber to uniquely identify the field in the message binary format, which means you can’t
reuse numbers you assign to fields once you start using the message.

 The numbers 1 to 15 take up only 1 byte in the encoded format, so using these
numbers for the frequently appearing message fields is a good idea. For more infor-
mation on numbering fields, please refer to the “Assigning Number Fields” in the Pro-
tobuf documentation (http://mng.bz/RZGK).

 Fields in a message can take two forms: singular fields (the default) or repeated
fields. The schema file we just reviewed shows an example of this. The first three fields
in the schema are singular. Singular fields are the default, and you don’t need to add
any additional information. repeated string movies = 3; in the previous schema is an
example of a repeated field, which means there can be exactly 0 or more values.
Repeated fields are analogous to resizable arrays, and in the Java API, they are repre-
sented as the List<T> type. 

C.2.1 Complex messages

Protobuf allows you to define a message type within a message. Also, a field in a mes-
sage can refer to another message. Consider the previous Avenger proto example.
Let’s say you want to expand the information for the movie beyond just the title.

Listing C.1 Simple Protobuf schema file avenger_v1.proto

Specifies using version 3 of Protobuf.
If you leave out the syntax attribute,

the assumed version is proto2.
Protobuf package 
declaration, used 
to namespace 
messages between 
different proto files

Specific package option 
for Java. If java_package is 
omitted, then generates 
code goes into the package 
declaration.

Java code generated from the 
Protobuf declarations will have 
each message defined in a 
separate .java file

Start of the message

A singular field definitionA repeated field definition

http://mng.bz/RZGK
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You’ve decided to add a new message type, AvengerMovie, to the proto file from the
previous example. 

syntax = "proto3";

package proto_files;

option java_package = "bbejeck.chapter_3.proto";
option java_multiple_files = true;

message Avenger {          

    message AvengerMovie {     
        string title = 1;
        string year = 2;
        string producer = 3;
    }

  string name = 1;
  string real_name = 2;
  repeated AvengerMovie = 3;
}

In this example, I’ve used a nested type and used it as a field, but I did this for demon-
stration purposes. There’s no requirement to declare a nested type as a field if you
don’t need to.

NOTE At the risk of stating the obvious, the numbering of fields for each
nested message is independent of any outer message types. In other words,
when creating a nested message type, you should restart the numbering of
the fields.

With Protobuf, you can nest message types to any level. But it’s essential to remember
how manageable the nesting is to maintain. At some point, files with deeply nested
types are hard to maintain. Sometimes, it’s better to break out complex nested types
into their own proto files. Fortunately, Protobuf provides an easy way to work with sep-
arate proto files. 

C.2.2 Importing

While Protobuf allows you to define multiple message types in a file, that is not always
possible. You could want to use a proto from another code module. Whatever the rea-
son, the ability to import is valuable as you can use existing proto definitions you need
to reuse throughout your code base. To import a proto file, you add an import state-
ment to the top of the proto file. Let’s revisit our avenger_v2.proto file example and
extract the message AvengerMovie into its own proto file. 

Listing C.2 Adding new message movies to avenger_v1.proto

Adds a new nested 
message type

Uses the message 
type as a field
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syntax = "proto3";

package proto_files;

option java_package = "bbejeck.chapter_3.proto";
option java_multiple_files = true;

message AvengerMovie {
        string title = 1;
        string year = 2;
        string producer = 3;
    }

Now, to use the AvengerMovie message, copy the avengerV1.proto file into the aveng-
erV2.proto file and add an import statement at the top of the file like this:

syntax = "proto3";

package proto_files;

import "avenger_movie.proto";

option java_package = "bbejeck.chapter_3.proto";
option java_multiple_files = true;

message AvengerV2 {
  string name = 1;
  string real_name = 2;
  repeated AvengerMovie = 3;
}

Whether to combine several message types in one proto file or break things out into
separate files probably lies along the lines of functionality. But ultimately, it will
depend on what works best for your use case.

 Before we conclude the coverage of Protobuf, I want to discuss one more aspect
that allows for using multiple event types per topic. 

C.2.3 Oneof type

Protobuf has a oneOf type that allows a message to have a field consisting of multiple
types, but only one at a time. The Protobuf oneOf is similar to Avro’s union type. It’s
important to note that you can’t define a oneof as a top-level element. You must wrap a
oneof in a message; you can’t have it defined alone in a proto file. 

 Let’s look at an example of a proto using the oneOf type. We’ll use the same pur-
chase example from the Avro union example so you can make a clear comparison. 

 

Listing C.3 Separate proto file avenger_movie.proto
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syntax = "proto3";

package proto_files;

option java_package = "bbejeck.chapter_3.proto";
option java_multiple_files = true;

message TransactionType {

          message Purchase {       
            string item = 1;
            double amount = 2;
         }

          message Return {         
            string item = 1;
            double amount = 2;
         }

         message Exchange {        
            string item = 1;
            double amount = 2;
            string new_item = 3;
         }

    string identifier = 1;

    oneof txt_type {               
         Purchase purchase = 2;
         Return return = 3;
         Exchange exchange = 4;
    }

}

As you can see here, you define the possible message types in the proto file. Then,
when you declare the oneoftxn_type field, you list the possible types the field can con-
tain. This ability to have a field that can take multiple types is essential to using the
RecordNameStrategy or TopicRecordNameStrategy since, with those strategies, the topics
may have more than one record type. 

 In this example, defining all the message types in one file makes sense since they
are closely related. But if you need to have several record types in one topic, but the
proto files are in different locations, you can also use schema references with Proto-
buf. Let’s look at how you would take this schema and use schema references.

 I won’t show the individual proto files for the example here of schema refer-
ences with Protobuf. But you can safely assume we’ve created separate proto files for
each nested message type. So the updated proto schema file now looks like the fol-
lowing listing.

Listing C.4 Protobuf with oneof type

Defines the 
purchase message

Defines the 
return message

Defines the 
exchange message

The oneof 
type field
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syntax = "proto3";

package proto_files;

import "purchase.proto";    
import "return.proto";
import "exchange.proto";

option java_package = "bbejeck.chapter_3.proto";
option java_multiple_files = true;

message TransactionType {

    string identifier = 1;

    oneof txt_type {                
         Purchase purchase = 2;
         Return return = 3;
         Exchange exchange = 4;
    }
}

Here, the proto file looks much cleaner with the other message types extracted from
separate files. Now that you’ve set up the proto file for schema references, let’s look at
how you would register a proto schema for using different event types.

NOTE When using schema references, you should use the TopicNameStrategy,
which uses the topic name to determine the subject used for schema lookup.
Using this strategy is important because it enforces subject-topic constraints
for all the types used in the schema refs to only the topic using the schema
references. 

{

 "schema" :"syntax = \"proto3\";     

            package proto_files;

            import \"purchase.proto\";
            import \"return.proto\";
            import \"exchange.proto\";

            option java_package = \"bbejeck.chapter_3.proto\";
            option java_multiple_files = \"true\";

            message TransactionType {

                string identifier = 1;

Listing C.5 Protobuf with one of type transaction_type.proto

Listing C.6 Protobuf schema reference

Adds the import 
statements

References the imported 
messages for the oneof field

The portion of the request with the 
schema containing the references
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                oneof txt_type {                
                     Purchase purchase = 2;
                     Return return = 3;
                     Exchange exchange = 4;
                }

            ",

  "schemaType": "PROTOBUF",       

  "references": [                   
        {
            "name": "purchase.proto",
            "subject": "purchase",
            "version": 1
        },
        {
            "name": "return.proto",
            "subject": "return",
            "version": 1
        },
        {
            "name": "exchange.proto,
            "subject": "exchange",
            "version": 1
        }
  ]

}

TIP When using schema references with Protobuf, you do not need to turn
off auto.shema.registration because Protobuf recursively autoloads all refer-
enced schemas. 

So far, you have learned how to register single Protobuf schemas and use multiple sche-
mas via schema references. Next, let’s move on to using Protobuf code generation. 

C.2.4 Code generation

Protobuf, like Avro, provides a mechanism for generating code from a schema file. I
mentioned the importance of generating code in the Avro section, but I’ll repeat it
here. You must generate the source code for the object types you want to work within
your applications. 

 The great thing about the code generation tools is that they remove the burden of
creating the model objects you’ll use. In addition to removing the tedious boilerplate
work, the generated objects are guaranteed to match the schema specifications.

 Protobuf supports code generation in several languages, but in this book, you will
use the Protobuf Java code generation. Now, let’s take a minute to walk through gen-
erating the Java source code for this example schema.

 Protobuf provides the protoc tool, which generates Java source code from proto
files. But you’ll use a gradle plugin for the Protobuf code generation. The plugin uses

Schema 
references by 
message name

Specifies the schema type; 
if this is left off, the format 
defaults to AVRO.

The references to the already 
registered schemas for these 
event objects



434 APPENDIX C Working with Avro, Protobuf, and JSON Schema
protoc, but the code generation is part of the project build process, so it’s automatic
and one less step for you. 

 To do this, go to the root directory where you cloned the source code for the book.
From the root of the project, run the command ./gradlew clean build and then go
and look at the build/generated-main-proto-java/main/java/bbejeck.chapter_3/proto
directory, and you’ll see the AvengerProto java file. 

 As with the Avro-generated source files, the Java objects generated by Protobuf are
immutable. As a result of this immutability, Protobuf provides Builders that allow you
to construct the message objects. Each message gets its own builder, taking the form of
MessageName.Builder. Nested messages still get their own builder, too, referenced by
OuterMessage.NestedMessage.Builder. 

NOTE What’s the builder pattern? The builder pattern provides a flexible
way for object construction. Instead of passing parameters to a constructor,
you add the required fields through methods on a builder. Each method on
the builder represents a field on the object. It’s one of the original Gang of
Four Design patterns (https://martinfowler.com/bliki/GangOfFour.html).

The example proto files have two option fields specific to the Protobuf Java API,
java_package and java_multiple_files. Let’s take a quick minute to discuss those
fields now:

 java_package—When specified, the java_package specifies the package for the
generated Java code. Otherwise, the Protobuf uses the package field. It would be
best to use the Protobuf package field to namespace proto files and the java_
package to specify a proper Java package name.

 java_multiple_files—Setting this configuration to true tells Protobuf to write
separate .java files for all top level messages and enums in the proto file at the
package level. Otherwise, proto writes the messages and enums as members of
the containing outer class.

So now you know how to use the included tools with Protobuf to generate source code
files. Remember, Protobuf supports many languages, but we focused on using Java,
which I used in the book. You may have noticed that while the tools are different, the
code Avro and Protobuf generate are reasonably similar. Some minor differences exist
with the helper methods Protobuf provides when you use the oneof field. 

C.2.5 Specific and dynamic types

When the Schema Registry Protobuf deserializers construct an object from the serial-
ized format, the resulting object can be a specific or dynamic type. This typing is just
like Avro. Depending on the information available when deserializing, the object can
be either a particular type of class or a GenericRecord. 

 Usually, you’ll want to use the specific type class because you’ll know the object’s
structure. For instance, when you deserialize and work with the AvengerProto object,
you’ll know exactly how to handle it in your code. But just like the Avro generic type,

https://martinfowler.com/bliki/GangOfFour.html
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working with the Protobuf dynamic type means you’ll have to query the object to dis-
cover the fields it contains and what data the object ultimately represents.

 Now you’ve learned the basics of working with Protobuf. We’ll move on to the
third schema format supported by Schema Registry, JSON. 

C.3 JSON Schema
Now we’ll get to the third schema type supported by Schema Registry, JSON Schema. For
JSON Schema, I will use version draft-07 (http://json-schema.org/draft-07/schema#). 

NOTE As with the Avro and Protobuf sections, I won’t go into every detail of
using a JSON schema. I’ll cover enough here to get you started. For the com-
plete information, you should go to https://json-schema.org/.

When working with the JSON schemas, you’ll notice some similarities with Avro sche-
mas, as they are both defined in JSON. However, the JSON Schema format is differ-
ent, so you can’t reuse an Avro schema for a JSON schema.

 Let’s jump in and look at JSON Schema. To help with the comparison to the other
formats, we’ll use the Avenger object again here.

{
  "$schema" : "http://json-schema.org/draft-07/schema#",  
  "title" : "Avenger",                                           
  "description" : "A JSON schema of Avenger object",    
  "javaType": "bbejeck.chapter_3.SimpleAvenger",
  "type" : "object",            
  "properties" : {       

     "name" : {
       "type": "string"
      },
     "movies" : {
        "type": "array",
        "items": {
          "type": "string"
        },
        "default": []
      },
      "realName": {
        "type": "string"
      }
   },
  "required" : ["name", "realName"]   
}

As you can see, the JSON schema is relatively close to what you’ve seen with Avro. The
type is object and it’s one of the simpleTypes. The object type is essentially a map with
the properties attribute representing the keys and values contained in the object. 

Listing C.7 JSON Schema for an Avenger object

Declares the schema version The title is not 
required but is 
good for metadata.

The description, 
again, is optional 
but good for 
informational 
purposes.

Declaring the type, which is 
object here. Analogous to record 
in Avro or message in Protobuf.

The properties, 
which are the 
fields on the 
object

Declares the 
required fields

http://json-schema.org/draft-07/schema#
https://json-schema.org/
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 The other simple types are array, boolean, integer, null, number, and string. Proper-
ties on an object are not required by default. You must add the property name to the
required array to enforce required fields.

C.3.1 Nested objects

JSON Schema supports having nested object types as well. Let’s expand the example
to add a movies field as we’ve done before. 

{
  "$schema" : "http://json-schema.org/draft-07/schema#",
  "title" : "Avenger",
  "description" : "A JSON Avenger object with a nested object",
  "javaType" : "bbejeck.chapter_3.SimpleAvenger"
  "type" : "object",
  "properties" : {

     "name" : {
       "type" : "string"
      },
      "realName": {
        "type" : "string"
      },
      "movies" : {       
        "type" : "array",
          "items" : {
             "type" : "object",                
             "javaType": "bbejeck.chapter_3.AvengerMovie"    
                  "properties" : {

                     "title" : {
                        "type" : "string"
                       },
                     "year" : {
                        "type" : "string"
                      },
                     "producer" : {
                         "type" : "string"
                     }
                   },
                   "required" : ["title", "year", "producer"]  
           }
     }
   },
  "required" : ["name", "realName"]
}

This example shows that all the properties on the nested object in the array are
required, but the array movies itself is not. However, the nesting of object structures
can become hard to manage very quickly. Fortunately, JSON Schema also supports ref-
erences, which can help keep the main object structure more manageable to view. 

Listing C.8 JSON Schema with nested object type

Adds the
movies

property

The movies property 
is an array, and you 
need to define the 
types in the array.

Specifies the 
class name of 
AvengerMovie for
the array type

All three properties
of the nested movie
object are required.
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C.3.2 JSON references

So, let’s update this schema to use references for the object definitions. 

{
  "$schema" : "http://json-schema.org/draft-07/schema#",
  "title" : "Avenger",
  "description" : "A JSON schema of Avenger object with an
    internal schema ref",

  "definitions" : {

         "avenger_movie" : {        
             "type" : "object" ,
             "properties" : {
               "title" : { "type" : "string" },
               "year" : { "type" : "string" },
               "producer" : { "type" : "string" }
             },
             "required" : ["title", "year", "producer"]
         }

  },

  "description" : "A JSON schema of Avenger object",
  "type" : "object",
  "javaType": "bbejeck.chapter_3.SimpleAvenger",
  "properties" : {

     "name" : {
       "type" : "string"
      },
      "realName": {
        "type" : "string"
      },
        "movies" : {
            "type" : "array",
              "items": { "$ref" : "#definitions/avenger_movie" }   
         }

     }
}

The way the $ref key works is to replace where you are using it with the entire contents
of what the ref points to. The updated schema is just as long as the previous schema, but
it’s easier to read and understand the structure. But you can also use the $ref attribute
to refer to separate files containing a JSON schema. So, let’s revisit the previous JSON
schema you just reviewed. Assume you’ve extracted avenger_movie to avenger_movie
.schema.json files. Now, you can update the schema to refer to those files, but the $ref
behavior is the same: it replaces the content where you place the reference. The follow-
ing listing provides the updated schema with external file references. 

Listing C.9 JSON Schema with references

Creates the object under 
the definitions keyword 

Refers to the
avenger_movie

definition
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{
  "$schema": "http://json-schema.org/draft-07/schema#",
  "title": "Avenger with an external schema reference",
  "description": "A JSON schema with refs to external schemas",
  "javaType": "bbejeck.chapter_3.ComplexAvenger",     
  "type": "object",
  "properties": {
    "name": {
      "type": "string"
    },
    "realName": {
      "type": "string"
    },
    "movies": {
      "type": "array",
      "items": {
        "$ref": "avenger_movie.schema.json"
      }
    }
  }
}

Now, you’ve simplified the schema even more by using the external references. Please
note that for this example, I’m assuming you placed the referenced JSON files in the
same directory as the referring.

NOTE When working with JSON schemas, it might be helpful to have a valida-
tor handy to ensure you are building schemas correctly. As of the writing of this
book, there is an online validator located at https://www.jsonschemavalidator
.net/, which I found helpful.

The JSON schema provides some keywords that allow for combining schemas. Those
keywords are allOf, anyOf, oneOf, and not. In particular, we want to look at the oneOf
keyword for use in Schema Registry’s multiple event types per topic. The oneOf key-
word works similarly to the same in Protobuf. 

 Next, look at an example of using Schema Registry schema imports with JSON. 

C.3.3 JSON Schema Registry schema references

Since I’ve already covered complex schemas and references with JSON, we’ll jump
into how you would submit a JSON schema with schema imports. Again, the JSON
shown here is a more readable version of what you’ll submit to Schema Registry. The
top "schema" information will be on one line with no line breaks. 

{

 "schema" :     

Listing C.10 JSON Schema with external file references

Listing C.11 JSON Schema reference

Changes the Java 
class name to reflect 
the changes to the 
schema

The JSON schema

https://www.jsonschemavalidator.net/
https://www.jsonschemavalidator.net/
https://www.jsonschemavalidator.net/
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      "{
        \"schema\" : \"http://json-schema.org/draft-07/schema#\",
        \"title\" : \"JSON schema example\",
        \"description\" : \"Schema imports with JSON\",
        \"javaType" = "transactionInfo\"           

               \"oneOf\": [
                         { \"$ref\" : \"purchase.schema.json\" },    
                         { \"$ref\" : \"return.schema.json\" },
                         { \"$ref\" : \"exchange.schema.json\" }
                 ]
       }",

  "schemaType": "JSON",        

  "references" : [               
        {
            "name": "purchase.schema.json",
            "subject": "purchase",
            "version": 1
        },
        {
            "name": "return.schema.json",
            "subject": "return",
                "version": 1
        },
        {
            "name": "exchange.schema.json,
            "subject": "exchange",
            "version": 1
        }
  ]

}

Other than the differences between the different formats, the format for submitting
schema references looks similar to what you have seen for Avro and Protobuf. When
using schema references with JSON schemas, the same configuration changes you
must take with Avro apply here. If you remember, you must set the properties auto
.register.schema=false and use.latest.version=true when configuring a producer to
work with JSON schemas. Chapter 4 covers configuring the various schema types with
clients (producers and consumers). 

 There’s another essential point to working with JSON schemas, especially with stat-
ically typed languages like Java. That is the specification of the class name. If you com-
pare the JSON schemas to Avro or Protobuf, you’ll notice a lack of information you
can use for the package or class name. But JSON schemas allow adding fields not
explicitly listed in the schema specification, known as the open content model.

 The open content model allows adding a top-level field to a schema file and desig-
nating the class name for deserializing. You can turn off adding additional fields by
setting "additionalProperties": false in the schema for an object, but otherwise, it’s

Specifies the className

JSON schema
refs using oneOf

Specifies the schema 
type as JSON

The references of the already 
regisered JSON schemas
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true by default. When using JSON schemas, adding a top-level field specifying the
class name is essential for deserialization when you can have multiple types in a topic.

 At this point, we’ve covered enough information for you to understand JSON sche-
mas well. But the schema is a specification, and you need to work with the objects that
follow the schema specification. The next section will discuss how to go from schema
to objects. 

C.3.4 JSON Schema code generation

As I said before, working with JSON schemas differs from working with Avro or Proto-
col Buffers regarding source code generation. The difference is a JSON schema is a
specification, and Avro and Protocol Buffers are frameworks complete with tooling. So,
with Avro and Protobuf, code generation is a first-class citizen. But code generation
with JSON schemas requires using third-party tools. 

 There are some popular tools for working with Java objects and JSON. While there
are many good choices, in this book’s source code, I will use the FasterXML/Jackson
utilities (https://github.com/FasterXML/jackson). Jackson provides serialization sup-
port and annotations you can use on a Java object. But I will use an additional open
source library for the annotation support—the Jackson jsonSchema Generator (https://
github.com/mbknor/mbknor-jackson-jsonSchema). While Jackson also offers schema
generation, the mbknor-jackson-jsonSchema offers functionality beyond Jackson’s.

 Before we get into the annotation extensions, let’s take a look at a Java class using
the basic annotations (some details are omitted for clarity).

public class Customer {
    @JsonProperty
    private String name;

    @JsonProperty
    private int id;

    @JsonProperty
    private String email;

}

Using the annotations gives you a couple of options. First, you don’t have to gener-
ate a schema physically. You can rely on the Schema Registry JSON serializers to
parse and register the schema during the serialization process. But if you have mul-
tiple event types in a single topic, you must add a top-level field specifying the class
name, as discussed in the previous section. So, you’ll need to generate a physical
schema in that case.

 The need to add the top-level field specifying a class name is where using the
mbknor-jackson-jsonSchema project comes into play. The mbknor-jackson-jsonSchema
library provides a @JsonSchemaInject annotation that supports injecting JSON Schema

Listing C.12 Java code with Jackson annotations

https://github.com/FasterXML/jackson
https://github.com/mbknor/mbknor-jackson-jsonSchema
https://github.com/mbknor/mbknor-jackson-jsonSchema
https://github.com/mbknor/mbknor-jackson-jsonSchema
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fragments. Let’s update the previous example and add the @JsonSchemaInject annota-
tion (some details are omitted for clarity). 

@JsonSchemaInject(strings=
        {@JsonSchemaString(
                path="javaType",
                value="bbejeck.chapter_3.codegen.Customer")})
public class Customer {
    @JsonProperty
    @JsonProperty
    private String name;

    @JsonProperty
    private int id;

    @JsonProperty
    private String email;

}

So the code here is the same; you’ve just added the @JsonSchemaInject annotation,
which places a top-level field javaClassName and enables multiple event types in a sin-
gle topic. Now, to generate the physical schema with the mbknor-jackson-jsonSchema
schema generator, you could do something like the following listing.

theClass = Class.forName(args[0]);
ObjectMapper mapper = new ObjectMapper();
JsonSchemaGenerator schemaGenerator = new JsonSchemaGenerator(mapper);
JsonNode jsonNode = schemaGenerator.generateJsonSchema(theClass);
String schema = mapper.writerWithDefaultPrettyPrinter()
        .writeValueAsString(jsonNode);

The resulting schema will look like the following listing.

{
  "$schema" : "http://json-schema.org/draft-04/schema#",
  "title" : "Customer",
  "type" : "object",
  "additionalProperties" : false,
  "javaType" : "bbejeck.chapter_3.codegen.Customer",
  "properties" : {
    "name" : {
      "type" : "string"
    },
    "id" : {
      "type" : "integer"
    },

Listing C.13 Java code with annotations to inject class name

Listing C.14 Using the schema generator

Listing C.15 Generated JSON Schema
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    "email" : {
      "type" : "string"
    }
  },
  "required" : [ "id" ]
}

There is an example of schema generation in the source code for the book in the bbe-
jeck.chapter_3.codegen package.

 The approach you’ve seen in this section is “code first, schema second”. You
started with existing Java objects or wrote the objects first, applied annotations, and
then generated a schema. However, some may find hand-rolling the code awkward
and prefer to write a schema first and then generate the code. We’ll cover code gener-
ation from a schema next.

 Another tool, https://github.com/joelittlejohn/jsonschema2pojo, offers Java code
generation from a JSON schema. The jsonschema2pojo library optionally supports
generating with annotations. The supported annotation styles are for the following
Java-JSON tools: Jackson 1.x, Jackson 2.x, Gson, and Moshi.

NOTE I’ve already mentioned Jackson, but here I’ll point out two new Java-
JSON tools. Gson (https://github.com/google/gson) comes from Google,
and Moshi (https://github.com/square/moshi) comes from Square. Both
are libraries for converting Java objects to and from their JSON representa-
tion. I won’t go into details about either of them in this book. But if you want
to learn more about either, follow up using the provided links.

One unique point about jsonschema2pojo is that it offers an online solution, http://
www.jsonschema2pojo.org/, that can generate Java source code directly from the
browser. It’s also available as a command-line tool, Maven, or Gradle plugin. Since the
source code project for this book is Gradle-based, I will use the gradle plugin. 

NOTE On the jsonschema2pojo GitHub site, the gradle plugin is deprecated
and will only work with Gradle versions <7.0. But there is a fork of the gradle
plugin: plugin, https://github.com/eirnym/js2p-gradle, which will continue
new development, so I’ll use the forked version in this book. 

To generate your Java code from the schema, run the command ./gradlew build. Run-
ning the Gradle build generates the source code for Avro, Protobuf, and JSON
Schema simultaneously. I won’t go into details about the configuration of the various
build options, but you can look at the build.gradle file for more information.

 So, that concludes our coverage of code generation with JSON schemas. Next,
we’ll discuss how to configure the different serializers provided by Schema Registry to
work with Avro, Protobuf, and JSON. 

NOTE For those readers using macOS (or Linux), jsonschema2pojo is avail-
able for installation with Homebrew: brew install jsonschema2pojo. If you are
unfamiliar with Homebrew, it’s a package manager for installing software.
You can find out more about Homebrew at its home page: https://brew.sh/.

https://github.com/joelittlejohn/jsonschema2pojo
https://github.com/google/gson
https://github.com/square/moshi
http://www.jsonschema2pojo.org/
http://www.jsonschema2pojo.org/
https://github.com/eirnym/js2p-gradle
https://brew.sh/
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C.3.5 Specific and generic types

Like Avro and Protobuf, two categories of objects are available using a JSON schema
when deserializing. When configured with the specific class name, the Schema Regis-
try deserializer returns an object of that type. If you don’t configure the exact class for
deserialization or the deserializer can’t determine the class, then the deserializer
returns the object of JsonNode. You’ll work with the JsonNode similarly to working with a
DOM (Document Object Model) from an XML structure. 

 To use schema references, you’ll first need to register the referred schemas. Then,
from within the schema you want to use a reference from, you’ll need to specify three
things for the referred-to schema:

1 The reference name
2 The subject you registered the schema under
3 The exact version of the schema under the subject (the one in point 2 here)

In Avro, the reference name is the fully qualified name of the schema file. For Proto-
buf, it’s the name of the proto file, and with JSON, it’s a URL.

 Schema references can be convenient when you have a topic expecting one type of
object and another where the object uses the same type as one of its fields. However, you
don’t need to use schema references strictly because you have more than one topic requir-
ing the same schema. You can use schema references to keep a schema with a union of
types from getting too difficult to manage. It’s much cleaner to have a reference to the
schema for a complete field versus having a complex schema in the field definition.

NOTE Schema Registry supports schema references with Protobuf and JSON
as well. We’ll talk about schema references as well in those sections. Still, we’ll
only cover the syntactic details specific to Protobuf and JSON since we’ve cov-
ered the more general discussion in this section.

Let’s look at figure C.2 to clarify what I mean here.
 Now that you’ve learned how schema references work, let’s revisit our example

from section C.1.2 on Avro unions to see how this will look.

{
  "type": "record",
  "namespace": "bbejeck.chapter_3"
  "name": "Transaction",

  "fields" : [
    {"name": "txn_type", "type": [
                                    "bbejeck.chapter_3.Purchase",   
                                    "bbejeck.chapter_3.Return",
                                    "bbejeck.chapter_3.Exchange"
                                 ]},

    {"name": "identifier", "type": "long"}
  ]

 }

Uses a union type to
represent one of three

event types
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So in this schema, you are using a union for the txn_type field. Compared with the
schema directly above this one is much cleaner as you have a small array of types ver-
sus showing full schemas. 

 Now let’s walk through another example, and this time we’ll have an example of
how you can register a schema with references. First here is a readable example of the
JSON you’ll use to register your schema containing references:

{

 "schema" :                   
      "{
        \"type": \"record\",
        \"namespace\": \"bbejeck.chapter_3\"
        \"name\": \"transaction\",

        \"fields\" : [
                     {\"name\": \"txn_type\", \"type\": [
                 \"bbejeck.chapter_3.Purchase\",            
                 \"bbejeck.chapter_3.Return\",
                 \"bbejeck.chapter_3.Exchange\"
                ]},

                     {\"name\": \"identifier\", \"type\": \"long\"}
                    ]

      }",

{
"namespace": "bbejeck.chapter_3.avro",
"type": "record",
"name": "AvengerAvro",
"doc": "Schema of a Marvel character",
"fields": [
{"name": "name",
"type": "string",
"doc": "The super hero name"

},
{"name": "real_name",
"type": "string",
"doc": "Real life name"

},
{"name": "movies", "type":

{"type": "array", "items": "string"},
"default": [],
"doc": "Movies the super hero is featured in"

}
]

}

Name of the schema

Fields in the object

The field name

The field type

The default value

A description of what
the field represents

Figure C.2 Schema references help when you already have a schema for another topic you need to reuse.

The portion of the request 
with the schema containing 
the references

Schema 
references by 
class name
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  "schemaType": "AVRO",

  "references" : [                       
        {
            "name": "bbejeck.chapter_3.Purchase",
            "subject": "purchase",
            "version": 1
        },
        {
            "name": "bbejeck.chapter_3.Return",
            "subject": "return",
            "version": 1
        },
        {
            "name": "bbejeck.chapter_3.Exchange",
            "subject": "exchange",
            "version": 1
        }
  ]

}

As you can see from the JSON here, you post the schema along with the references
needed. This format is required; otherwise, by just sending a list of references, Schema
Registry wouldn’t know which schema to associate the references. 

NOTE The JSON presented here is formatted for readability. The schema
property needs to be a string value without any line breaks when submitting
the schema reference JSON.

The references to the 
already registered 
schemas for these 
event objects



appendix D
Understanding Kafka

Streams architecture

In this book, you’ve learned that Kafka Streams is a directed, acyclic graph of pro-
cessing nodes called a topology. You’ve seen how to add processing nodes to a
topology for processing events in a Kafka Topic. But we still need to discuss how
Kafka Streams get events into a topology, how the processing occurs, and how pro-
cessed events are written back to a Kafka topic. We’ll take a deeper look into these
questions in this appendix.

D.1 High-level view
Figure D.1 shows a high-level view of what we’re going to discuss. 

Embedded consumer
consumes records
from Kafka
topic.

One or more processors
perform some action
on each record.

Embedded producer
writes results of processing
back to a Kafka topic.

Figure D.1 Componetized view of a Kafka Streams application. There are 
three sections: consuming, processing, and producing.
446
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As you can see from the figure, at a high level, we can break up how a Kafka Streams
application works into three categories:

 Consuming events from a Kafka topic
 Assigning, distributing, and processing events
 Producing processed events results to a Kafka topic

Given that we’ve already covered the Kafka clients in a previous chapter and that
Kafka Streams is an abstraction over them, we won’t get into those details here.
Instead, I’ll combine consuming and producing into a more general discussion on cli-
ents and then go deeper into Kafka Streams architecture for assigning, distributing,
and processing events. 

D.2 Consumer and producer clients in Kafka Streams
Our examples show that a Kafka Streams application creates a KStream instance that
starts with a source node and ends with a sink node. Kafka Streams uses embedded
KafkaConsumer and KafkaProducer clients to consume events from a source node and
produce transformed results back to Kafka. 

 So, where do the clients come from? Kafka Streams uses an internal class, Default-
KafkaClientSupplier, which implements the KafkaClientSupplier interface that pro-
vides all the clients Kafka Streams needs. 

NOTE The KafkaClientSupplier has methods that provide an admin client, a
restore consumer, a global consumer, and a producer client. We’ve covered
the admin client in a previous chapter. The restore consumer and global con-
sumer are plain KafkaConsumer objects with specific roles within Kafka Streams,
and we’ll discuss their roles later. 

Occasionally, a user will ask about providing their own clients. While most of the time
it’s not necessary, it’s possible. For example, you may have some custom observability
code you’ve added by extending the KafkaConsumer or KafkaProducer classes. 

 The KafkaStreams object has a few constructor overloads; a few accept the Kafka-
ClientSupplier interface as a parameter. So, to provide Kafka Streams with your own
clients, you would implement an instance of the KafkaClientSupplier and pass it in as
one of the constructor parameters like in the following listing (see bbejeck.chap-
ter_6.client_supplier.CustomKafkaStreamsClientSupplier.java). 

KafkaStreams kafkaStreams =
new KafkaStreams(topology,
  properties,
  new CustomKafkaStreamsClientSupplier());

The CustomKafkaStreamsClientSupplier in the source doesn’t do anything special; it’s
there simply to show how you would provide your implementations of the client

Listing D.1 Supplying Kafka Streams with your version of clients example
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interfaces. When would you provide your client implementations? I’ve seen users who
wanted to use some company-specific auditing logic in the past. But again, in most
cases, you’ll want to stick with the clients Kafka Streams builds internally. 

 So, a natural follow-up would be that you don’t want to provide any custom clients,
but you’d like to supply some client configurations to meet your needs. Usually, the
default configurations Kafka Streams uses are sufficient, but there are cases where you
need to provide some custom configuration.

 It’s straightforward to provide your client configurations by adding them to the
properties you supply when building the KafkaStreams object. Kafka Streams passes
the properties you provide to every internal object requiring configuration. Any con-
figurations that do not match the expected ones are ignored. 

 For example, let’s say you have some processors that do some time-intensive work,
and there’s a reasonable probability that the processing won’t be complete in time
before the internal consumer needs to make another poll call before getting kicked
out of the consumer group. So you decide to increase the maximum time the Kafka-
Consumer can take between poll calls. The following listing shows how you would set
the configuration. 

props.put(StreamsConfig.APPLICATION_ID_CONFIG, "yelling_app_id");
props.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
props.put(ConsumerConfig.MAX_POLL_INTERVAL_MS_CONFIG, 45_000);    

So, all you need to do here is set the max.poll.interval.ms configuration along with
the stream-specific properties. But you should note that when passing in configura-
tions, Kafka Streams applies it in all cases where applicable. From this example, the
main consumer (the consumer that gets records for the topology), restore consumer,
and global consumer all have increased the time allowed between poll calls. 

 To avoid the issue of property conflicts, Kafka Streams provides prefixes to target the
specific client you wish to configure. So, to make sure you only adjust the main con-
sumer, you would update how you set the configuration like in the following listing.

props.put(
StreamsConfig.mainConsumerPrefix(ConsumerConfig.MAX_POLL_INTERVAL_MS_CONFIG)
, 45_000);

Only the configuration for the main consumer is affected by using the StreamsConfig
.mainConsumerPrefix method to set the parameter. The other prefix methods offered
are consumerPrefix, producerPrefix, topicPrefix (used for internal topics created by

Listing D.2 Adjusting a configuration for the embedded KafkaConsumer

Listing D.3 Adjusting max poll interval for the main consumer only

Adds a custom value for the max poll interval
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Kafka Streams), restoreConsumerPrefix, globalConsumerPrefix, and adminClientPrefix.
I recommend using the prefix methods when setting any client configurations. 

 One final note on client configurations within Kafka Streams: you can’t update all
client configurations with a Kafka Streams application. For example, auto.commit is set
to false, and changing it to true is impossible. This is because Kafka Streams may not
fully process all records from the previous poll call by the time it makes another. So,
by not using auto-commit, you are guaranteed to reprocess any partially processed
records should a failure occur. For a full explanation of when not to use auto-commit,
see section 4.3.5. 

 We’ve completed our discussion of using the embedded clients in Kafka Streams,
so let’s move on to the architecture of Kafka Streams and how it affects the processing
of records in the topology. 

D.3 Assigning, distributing, and processing events
This section will discuss the structure of a Kafka Streams application and how it orga-
nizes and distributes work. In section 6.6.3, we discussed the structure of a Kafka
Streams application and how each source node creates a sub-topology (figure D.2). 

A sub-topology is a discrete section of the overall application with its own source node
and processing node(s), which could include a terminal node (most likely a sink for
writing results back to a Kafka topic). Several of the diagrams we’ve looked at in this
chapter illustrate what a sub-topology is. But first, we need to discuss how Kafka
Streams determines how it will process records.

 Kafka Streams uses the concept of a Task as its basic unit of work. A Task processes
records from a specific sub-topology and partition number. Figure D.3 helps describe
this assignment mapping. 

 From looking at figure D.3, each Task is tied to a specific sub-topology and a parti-
tion number from which it will process records. Note that I’m using the term partition
number instead of partition; we’ll discuss what that means later in this section.

 

builder.stream("topicA",
Consumed.as("Input"))

Topologies:
Sub-topology: 0
Source: Input (topics: [topicA])

Building the KStream creates a sub-topology,
and since its source node is the first one, it
has an ID of 0.

myStream =

Figure D.2 Creating a KStream instance with a source creates a sub-topology
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NOTE I’m not going too much into specific details of classes and field names,
but providing more of a conceptual view as the implementation details may
change over time.

Additionally, each Task has a full copy of the specific sub-topology it’s responsible for.
Let’s look at figure D.4 to demonstrate this point.

Since each Task has a copy of its assigned sub-topology, we can see that Kafka Streams
has a shared-nothing architecture, meaning that each task processes records inde-
pendently of other tasks. This principle of not sharing and working on its copy of the
topology is fundamental when we talked about state in chapter 7.

 So far, we’ve learned that Kafka Streams uses tasks for the unit of work in the appli-
cation. But what determines how many tasks there are? It’s the number of partitions in
the underlying topic. Let’s start with the simplest case of a single source node with a
single topic. Figure D.5 will help make this clear.

 From the illustration here, the topic with four partitions results in four tasks. Each
task is represented by the format of sub-topology partition number, which is also how
Kafka Streams prints a task’s ID, which you may see in the logs. So, looking at the first

Topologies:
Sub-topology: 0
Source: Input (topics: [topicA])

0 1 2 3

topicA has four
partitions numbered
0-3.

Task
TaskID
topicGroupId
partition

Figure D.3 Task assignment in Kafka Streams

Task
TaskID

topicGroupId
partition
processorTopology

Each task has its own copy of
the topology, which enablesKafka Streams
to have a "nothing shared" architecture.

Figure D.4 Each task 
contains a copy of the 
specific sub-topology it’s 
responsible for processing 
records.
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task, 0_0, it’s responsible for processing records on the first sub-topology, 0, from par-
tition 0 of topic A. 

 But as we’ve noted before, a source node can subscribe to more than one topic, so
let’s take a look figure D.6 to see how having multiple topics may or may not affect the
total number of tasks.

By adding another topic with three partitions, we can see that the total number of tasks
remains unchanged at four. However, the number of topic partitions has increased for
three tasks. This is because Kafka Streams groups topic partitions for a task by partition

Topologies:
Sub-topology: 0

0 1 2 3

0 1_

0 0_

0 2_

0 3_

Kafka Streams creates the same number
of tasks as there are
max input partitions across
input source topics.

topicA has four partitions ...

... And the partition
it handles records for.

A task has an ID - the
group or sub-topology
number that represents the
ProcessorTopology it
processes events on.

Figure D.5 With a single topic, the number of tasks is equal to the total number of 
partitions in that topic.

Topologies:
Sub-topology: 0

0 1 2 3

0 1  (A1, B1)_

0 0 (A0,B0)_

0 2 (A2, B2)_

0 3 (A3)_

Kafka Streams creates the same number
of tasks as there are max input partitions across
input source topics.

topicA has four partitions

0 1 2

topicB has three partitions

Partitions are grouped by
number which is made clear
now with multiple input
topics. As a result, tasks
are responsible for more than
one topic partition with multiple
input sources.

Number tasks = max(A partitions, B partitions)

Figure D.6 With multiple topics in a single source node, the total number of tasks is the 
maximum number of partitions across the topics.
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number. So, task 0_0 processes records in the first sub-topology and any records from
the 0 partition for all topics in that particular source node. 

 The same is true for the other tasks. Until there are no more partitions to assign,
the fourth task only handles records from topicA. This means that when you add more
than one topic to a source node, the total number of tasks created is the maximum
number of partitions across all the input topics. If we put this into an equation, it
would look like tasks = max(topicA partitions, topicB partitions). Since the new topic
has three partitions, the total number of tasks remains unchanged.

 Finally, let’s consider when you add a new KStream instance, which adds its own
source (figure D.7). 

By adding another source node, which creates another sub-topology, Kafka Streams
adds another three tasks for a total of seven. So we can update our formula for how
many tasks Kafka Streams creates to be the sum of max partitions for all sub-topologies.
Understanding the number of tasks created is essential to get maximum performance
out of your applications. In the next section, we’ll discuss this concept in more detail
as we continue exploring Kafka Streams architecture.

NOTE Each task operates independently and does not share information or
state with other tasks.

Topologies:
Sub-topology: 0

0 1 2 3

0 0 (A0)_

0 1  (A1)_

0 2 (A2)_

0 3 (A3)_

Kafka Streams creates the same number
of tasks as there are max input partitions across
input source topics.

topicA has four partitions

Topologies:
Sub-topology: 1

0 1 2

topicB has three partitions

1 0 (B0)_

1 1  (B1)_

1 2 (B2)_With an additional sub-topology
we get another set of tasks
as a result there are seven tasks
The formula is sum(max(input partitions)) across sub-toplogies.

Figure D.7 With multiple source nodes, the total number of tasks is the sum of max 
partitions for all source nodes.
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Now that you’ve seen the unit of work for the Kafka Streams application, we need to
talk about execution. 

D.4 Threads in Kafka Streams: StreamThread
Kafka Streams uses StreamThread for running tasks. Note that StreamThread extends the
java.lang.Thread class. 

 The default number of threads in a Kafka Streams application is one. To increase
the number of threads, you set the StreamsConfig.NUM_STREAM_THREADS_CONFIG configu-
ration to a value greater than 1. The question is, how many threads should you allocate?
To answer that question, we need to consider the number of cores on your machine,
but for now, let’s stick to considerations for Kafka Streams only. 

 From our discussion of KafkaConsumer behavior from the client chapter, the maxi-
mum number of active consumer clients corresponds to the number of partitions; any
beyond that will be idle. So, the same rules apply here as well, but the maximum num-
ber of stream threads to create depends on the number of tasks (figure D.8).

Going with our first task example, you could allocate up to four stream threads. Kafka
Streams will evenly distribute the tasks to the running threads, so in our illustration
here, adding threads over four is idle as there are no more tasks to assign.

 
 
 

0 1 2 3

Task 0 0_

Stream thread

Task 0 1_

Stream thread

Task 0 2_

Stream thread

Task 0 3_

Stream thread Stream thread

Four input partitions
result in four tasks.

Threads beyond the
number of tasks are
idle.

Figure D.8 You can have as many threads as tasks; any additional threads will be idle.
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 But when determining the correct number of threads to use and throughput con-
siderations, you’re not limited to thinking about stream threads alone. Kafka Streams
instances with the same application.id are logically considered one application. So
that means that multiple applications started with the same app ID go through a simi-
lar task assignment process. Let’s look at figure D.9 to demonstrate.

By starting two applications with two threads, each one gets assigned two tasks, which
means each thread has one task. So, a basic rule of thumb is to start some combina-
tion of tasks and application instances equal to the number of tasks for maximum
throughput.

 This flexibility of application instances and threads leads to a powerful concept of
Kafka Streams: dynamic membership. In chapter 4 on clients, we discussed how the
consumer rebalance protocol worked. When group membership changes, a rebalance
occurs, assigning resources. Since Kafka Streams uses embedded Kafka consumers, it
uses the same rebalance functionality. Figure D.10 demonstrates this process.

 When a Kafka Streams application comes online, current members give up some
tasks assigned to the newly running application. The reverse process is true as well.
When an instance goes down, Kafka Streams reassigns the tasks it holds to the other

0 1 2 3

Task 0 0_

Stream thread

Task 0 1_

Stream thread

Task 0 2_

Stream thread

Task 0 3_

Stream thread

Four input partitions
result in four tasks.

application.id = "streams-app" application.id = "streams-app"

Kafka Streams
application instance
with two threads

Kafka Streams
application instance
with two threads

host 1 host 2

Figure D.9 Multiple Kafka Streams instances with the same ID are logically one application, so tasks get 
assigned across instances.
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active applications (figure D.11). This dynamic task assignment is compelling
because it means you can respond to changes in demand for processing by either
starting up or shutting down applications on the fly, and Kafka Streams will automat-
ically handle it.

 From the illustration here, when demand is low, you can run one Kafka Streams
instance with one thread processing all six tasks. But when the number of events
increases and you need more processing power, you can start two more additional
streams apps, and after rebalancing, the original application gives away four tasks. The
newly started applications pick up two tasks each.

 So far, we’ve covered how to maximize throughput by providing a combination
of threads in a Kafka Streams instance and the total number of Kafka Streams appli-
cations equal to the number of tasks. There’s one more situation I’d like to cover
that is more nuanced: when you want to maximize throughput, and you have a
source node with multiple topics. If you remember, the number of tasks for a source
node with multiple topics is the maximum partition count across all the input topics.

Task 0 0_

Stream thread

Task 0 1_ Task 0 2_

Stream thread

Task 0 3_

Task 0 0_

Stream thread

Task 0 1_

Task 0 2_

Stream thread

Task 0 3_

Stream thread Stream thread

Starting another Kafka Streams instance
results in a rebalance and two tasks are
assigned to the new application.

The single application
has two threads and
four tasks.

Figure D.10 Starting a second Kafka Streams instance causes a rebalance and distribution of tasks to the new 
instance.
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For example, consider you’re building a Kafka Streams application that starts like in
the following listing.

StreamsBuilder builder = new StreamsBuilder();
// topicA has 4 partitions and topicB has 3
KStream<String, String> myStream = builder.stream(List.of("topicA",
  "topicB"));
myStream.filter(..).mapValues(..).to(..);

We know from our previous conversation that we’ll end up with four tasks even
though there are seven input partitions. While getting the same number of stream
threads per task is no problem, you can access multiple servers, so spreading the appli-
cation to a few servers is not an issue.

 Ideally, you would like to use a thread per task to maximize your processing
throughput. But since you’ve combined topics, you have three tasks doubled up with
two topic-partitions to process. In this case, we can make some minor changes to the

Listing D.4 Defining a stream with one source and multiple topics

Task 0 0_

Stream thread

Task 0 1_ Task 0 2_

Stream thread

Task 0 3_

Task 0 0_

Stream thread

Task 0 1_

Task 0 2_

Stream thread

Task 0 3_

Stream thread Stream thread If you take an
application offline
or  if it crashes,
the remaining
active ones pick
up the tasks of
the offline one.

Figure D.11 Kafka Streams also dynamically handles applications dropping out and reassigns tasks 
to the active members left.
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application, and you can increase the task count to equal the number of input parti-
tions, giving you maximum processing with a thread per task.

 What you’re going to do is to create a KStream for each input topic. Then, you take
each KStream object and pass it to the buildStream method, where we add the required
operations for the topology. 

StreamsBuilder builder = new StreamsBuilder();
KStream<String, String> streamA = builder.stream("topicA");    
KStream<String, String> streamB = builder.stream("topicB");    

buildStream(KStream<String, String> sourceStream) {    
  return sourceStream.filter(..).mapValues(..);
}

buildStream(streamA).to("output");   
buildStream(streamB).to("output");   

By making this small change, we’ve gone from one sub-topology to having two, and
the significance of this is we now have seven tasks instead of four, allowing us to run a
stream thread per task for maximum throughput.

 While it’s true that we have some code duplication, we’ve tried to keep it to a mini-
mum, and you’ll need to consider the tradeoff of having maximum throughput for
the application. To be clear, I presented this case to demonstrate the relationship
between tasks and a sub-topology. It’s not meant to represent a best practice; instead,
it’s something to consider when looking at the performance factors for a Kafka
Streams application. 

D.5 Processing records
So far, we’ve talked about how a task is the unit of work and how threads are executed
in a Kafka Streams application. To complete the discussion, let’s go into some details
on the Kafka Streams tasks in action. We’ll look into the lifecycle of a single Stream-
Thread in a Kafka Steams application. For our tour of the stream thread lifecycle, we
assume you’ve already built and deployed your Kafka Streams application, and it’s up
and running successfully. 

 Starting your application with the KafkaStreams.start() method will start all of the
StreamThread instances you have configured. 

NOTE For clarity, we will only discuss one StreamThread in a single Kafka
Stream application, but there could be several of both in practice.

A StreamThread has several states it can transition to, as shown in figure D.12.
 What you see here is the full state graph, but for a successful initial start, the states

will progress in the manner shown in figure D.13.

Listing D.5 Creating a KStream per topic to maximize task count

Creates a stream 
per topic

Method to build 
streaming topology

Call method for 
each source stream
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From this illustration, you can see the stream thread starts and then goes through a
progression of starting, receiving its task assignment, and then finally running, which
is the state where it’s processing events. We will jump directly into the running state
since we discussed task assignments in the previous section. I’m not going to describe
every detail of the lifecycle while a thread is running, but it’s more of an overview of
the main points you’ll want to be aware of when running a Kafka Streams application.

 For a reference point, we’re going to follow along with figure D.14, illustrating
what is going on with the stream thread while it’s doing its job.

 So, the first step is the embedded consumer subscribes to the topics you provided
to the StreamBuilder#stream() method, whether you provided full names or a regular
expression. 

 After subscribing to topics, the next step is to poll for records for processing
through the topology. With records returned from the poll call, they need to be dis-
tributed to the tasks. The distribution process involves retrieving the appropriate task
for a batch of records by topic partition. Once located, the task adds the records to its
processing queue. There’s one point we should discuss briefly here, and we’ll use fig-
ure D.15 to help.

 

Partitions
revoked

Starting

Created

Partitions
assigned

Running

Pending
shutdown

Dead

Figure D.12 A StreamThread 
has several states that it can go 
through processing events.

Partitions
revoked

Starting

Created

Partitions
assigned

Running

Pending
shutdown

Dead

Figure D.13 The StreamThread 
state progression on an initial, 
successful startup
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StreamThread
transitions to a
Running state.

Application run loop

Embedded consumer subscribes
to topic(s).

1

2

Consumer polls
for records.

Task(s) process records.

Time to poll again?
No   Yes

Consumer

Consumer

3

1

2

Breaks processing loop 3

Figure D.14 StreamThread lifecycle running in an application

consumer

Topic A
0 1 2 Partitions

0 0_ 0 1_ 0 2_

In the application run loop,
records returned
by the consumer are
distributed to tasks
by their topic partition
assignment.

Tasks store records
for processing in
an internal queue.

1

2

3

If the number of
records in the
internal queue
exceed the configured
size, Kafka Streams
pauses consuming on
the associated
topic partition.

Figure D.15 Pausing a topic partition if the number of records exceeds the configured max buffer size
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As we showed, each task has a queue for holding records it will process. If the total
number of records in the queue exceeds the configured expected size (StreamsCo-
nifg.BUFFERED_RECORDS_PER_PARTITION_CONFIG) of 1,000, the embedded consumer
pauses consumption on the given topic partition. Once the queue size goes below the
threshold, consuming for that topic partition resumes.

 At this point, all tasks have added records to their queues, but before processing
starts, there’s a check to see whether there’s a need to restore any local state from a
changelog topic. We’re assuming that our application has no stateful tasks, so no
restoring is needed. We discussed the restoring process in chapter 7 on stateful Kafka
Streams.

 Now that we’ve determined there’s no restoring needed, it’s time to process some
records. Using figure D.16, let’s discuss how Kafka Streams chooses the next record to
process for each task.

Kafka Streams processing proceeds by iterating over tasks. It selects a record from the
internal queue with the smallest timestamp for each task. After all tasks have pro-
cessed some records, some bookkeeping needs must be attended to.

NOTE Restoring and processing don’t run until full completion in one step.
During this process loop, each will make some progress and then return so
that each step in this loop gets a chance to execute.

The first bookkeeping item on the list is to execute any necessary punctuations.
Punctuation is an arbitrary action you can schedule with the Processor API. We cov-
ered punctuation in chapter 10 on the Processor API. After checking for punctua-
tion, the next bookkeeping item is to determine whether it’s time for a commit.
Remember, committing is when a consumer stores the offset (+1) of the latest
record successfully processed. Kafka Streams uses an embedded consumer, so it fol-
lows the same procedure.

When it comes time for
task 0 0 to provide a_

record for processing, it
selects the record from the
queue with the earliest
timestamp at the head.

2

1

topicA-0 topicB-0

Task 0 0 contains a co-partitioned_

assignment, topicA
and topicB and the 0th partition.

Task 0 0_

Figure D.16 Records for processing are chosen by selecting the queue with the 
smallest timestamp of the head record.
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 In Kafka Streams, the default commit interval configuration is 30 seconds. The
determination for committing is if at least 30 seconds (or whatever the configured
commit interval is) has elapsed since the previous one. The time used for this calcula-
tion is the system time from the Kafka Streams application environment.

 The last step at the bottom of the processing loop potentially does one of two
things: either adjusting the number of records each task will process and/or checking
whether it’s time to break out of the processing loop and return to the consumer and
poll for new records.

 While it’s important to process as many records as possible, ensuring that the pro-
cessing loop terminates in time to make another poll call is equally important. Other-
wise, the Kafka Streams application gets kicked out of the consumer group, causing a
rebalance, only to trigger another rebalance when rejoining the group. Let’s look at
an illustration demonstrating the checks Kafka Streams makes to maximize processing
while ensuring liveliness (figure D.17).

Kafka Streams checks how much time has elapsed since the last poll, and if the time
elapsed is more than half of the configured maximum poll interval, it reduces the
number of records each task processes by one half and then breaks the processing
loop. If there’s enough time left to continue in the processing loop but there have
been punctuations or a commit, the number of records processed by each task is
halved at this point as well. Otherwise, the maximum number of records each task can
process is incremented by 1.

Consumer polls
for records.

Task(s) process records

Check time left;
if enough time elapsed,
halve the number of records
processed by each task and break
the processing loop (go back to step 1).

Check if punctuation or commit
occurred; if yes, also halve the
number of records each task will
process (go back to step 2).

Otherwise, increment the number
of records each task will process
by 1 and return to step 2.

Consumer 1

2

2a

2b

2c
Figure D.17 Kafka Streams 
does some checks at the bottom 
of the processing loop.
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 Let’s consider one final point before we wrap up this appendix. While Kafka
Streams has measures to ensure liveliness, it’s still the developer’s responsibility to
ensure processors are taking only a short time to complete, as the resulting rebalances
from missing a poll call are a source of frustration and negatively affect throughput. 
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docker-compose exec broker bash command 27
docker-compose file 136
docker-compose.yml file 26
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code 288
@EnableKafka annotation 363
@EnableKafkaStreams 368–371
EOS (exactly once semantics) 216
errors.tolerance configuration 145
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449–453
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filtering purchases 178–179
naming topology nodes 183–184
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defined 6–8
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Events object 126, 128
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134–135
ExtractField transform 142
extract method 185
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ExtractRecordMetadataTimestamp.onInvalid-

Timestamp method 294

F

FailOnInvalidTimestamp class 294, 296
fetch requests 21
Field objects 64
fields array 54
fields element 424
Fields.name() 64
filesystems, state stores location on 219–220
flapMap processor 171
flatMap operation 171
float scalar type 427
fold operation 190
ForeachAction interface 176, 278
foreach method 177
forward compatibility 417–419
FORWARD compatibility mode 71
FORWARD_TRANSITIVE compatibility mode 71
foundNewSymbols Boolean 152
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- -from-beginning parameter 27
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FULL_TRANSITIVE compatibility mode 71
Future.get() method 92
Future<RecordMetadata> 92

G
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GenericRecord.getSchema().getFields() 64
generic types 443–445
get() method 125, 360, 366
getKeyMetadata 382
@GetMapping annotation 382
getOnlyPartition method 386

getTxnType() method 130
globalConsumerPrefix method 449
GlobalKTable 227, 239–241, 249
gradle-avro-plugin 57
Gradle build tool 57
gradle plugin 434, 442
GROUP BY clause 330–331, 337
group-by details 192–193
groupBy fields 260
groupByKey method 191–192, 195, 263
groupByKey operator 200
groupBy method 191
group.id 136
group id configuration 102–107

eager rebalancing 105–106
incremental cooperative rebalancing 106–107
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@Handler methods 361
handleUnknownObject method 361
HashMap 64, 270
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Header 186
@Header annotation 366
Hello World for Kafka Streams 160–168

configuration 166–167
Serde creation 167–168
topology for Yelling app 161–166

HostInfo field 383
HostInfo object 383
HttpRequest object 149–150

I

id attribute 365
idempotent producer 116–118
identity function 182
import statement 429
incremental cooperative rebalancing 106–107
index file 33
init() method 305, 309–310, 373, 383
Initializer instance 234
init method 373
initTransactions() method 119
Instant.truncatedTo method 279
interactive development 176–178
Interactive Queries 374–388

Kafka Streams and information sharing 375
int scalar type 427
IoC (inversion of control) 353
IoT (Internet of Things) 67
IotSensorAggregation object 281
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java_multiple_files property 83
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java.time.Instant object 279
java.util.concurrent package 151
java.util.Consumer interface 182
java.util.Function interface 182
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join method 243
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jq 52
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js2p-gradle plugin 59
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JSON Schema 48, 435–445

code generation 440–442
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references 437–438
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serializers and deserializers 84–85
specific and generic types 443–445

@JsonSchemaInject annotation 441
JSONSchemaSerde 176
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overview 19
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data retention 30–31
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creating topics 26
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producing records on command line 26–27
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98–116
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idempotent producer 116–118
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transactions 122–123
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consuming 127–130
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overview 89–90
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Kafka delivery semantics 94–95
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making connectors dynamic with monitoring 

threads 150–152
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overview 133–141
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poll interval 101
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KafkaConsumer client 447
Kafka event streaming platform 3–17

example of applying 13–16
KAFKA format 328
@KafkaHandler annotation 361
KafkaHeaders class 366
KafkaJsonDeserializer 84
KafkaJsonDeserializerConfig.JSON_KEY_TYPE 84
KafkaJsonSchemaDeserializer 84
KafkaJsonSchemaSerializer 84
KafkaJsonSerializer 84
@KafkaListener annotation 359–360, 362, 

364–365
@KafkaListener declaration 359
KafkaListener instance 359
KafkaProducer, producing records with 90–98, 

326
Kafka delivery semantics 94–95
partition assignment 95–96
producer configurations 93–94
specifying custom partitioner 98
timestamps 98
writing custom partitioner 96–97

KafkaProducer class 127
KafkaProducer client 447
KafkaProducer.send() method 92, 367
KafkaProducer.sendOffsetsToTransaction 

method 123
KafkaProtobufDeserializer 83
KafkaProtobufSerializer 83
Kafka Streams

architecture of
assigning, distributing, and processing 

events 449–453
consumer and producer clients 447–449
high-level view 446–447
processing records 457–462
threads in 453–457
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process 178–186

Hello World for 160–168
configuration 166–167
Serde creation 167–168

overview of 159–160
stateful operations, adding to 190–206

state stores 215–225
time-based annotations 257–260
timestamps in 292–293

KafkaStreams 368–373
Kafka Streams API, integrating Processor API 

with 319–320
KafkaStreamsConfiguration 372
KafkaStreamsContainer 372, 381
KafkaStreamsCustomizer 369
KafkaStreams instance 381
kafkaStreams method 382
KafkaStreams object 447–448
KafkaStreams.query method 383–385
KafkaStreams.start() method 457
KafkaStreams.streamsMetadataForStore 387
KafkaStreamsYellingApplication 184
KafkaTemplate 368
KafkaTemplate instance 359
KafkaTemplate.send action 367
KafkaTemplate.send method 366
KafkaTemplate#send method 360
kafka_topic property 328
KAFKA type 341
KEY column 340
key.converter 136
key_format property 328
key_format setting 328
Key inner class 153
KeyMetadata 384
KeyQuery 384
KeyQueryMetadata 382
KeyQuery object 384
KeyQuery.withKey method 384
KEY reserved word 339
key.serializer configuration 93
KeyValueMapper 172, 247–248, 281–282
KeyValueMapper function 195
KeyValueMapper interface 171
KeyValueMapper<K, V, KeyValue<K1, >> 

interface 170
KeyValueMapper parameter 191
KeyValue objects 171–172, 281
KGroupedStream 192
ksqlDB (Kafka Streams Query Language) 321–351

creating streams and tables 338–341
overview of 322–325
Schema Registry integration 341–345
streaming queries 325–332

ksql.query.pull.table.scan.enabled 337
ksql.schema.registry.url property 328
KStream 227, 301
KStream API 166, 169, 233, 258
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KStream#filter method 178
KStream.filterNot method 178
KStream.flatMap method 171
KStream.groupByKey() method 287
KStream instance 166, 173, 195, 302, 452
KStream interface 177, 191
KStream.join method 207
KStream<K, V> instance 182
KStream<K, V> object 182
KStream.map method 170
KStream.map operator 282
KStream.mapValues method 170, 178
KStream.merge operator 183
KStream object 182, 203, 278, 457
KStream operator 302
KStream.peek 280
KStream.peek() method 176–177
KStream.print() method 176–177
KStream#print processor 173
KStream.process() method 319–320
KStream.repartition method 203–204
KStream.source method 173
KStream.split() method 179, 182
KStream#split method 178
KStream.split operator 183
KStream.to() method 165, 173, 185, 212
KStream.toTable method 233
KTable API 226–256, 300

aggregations 233–239
GlobalKTable 239–241
KTable 227–231

KStream and KTable API in action
230–231

updates to records or changelog 229–230
table joins 241–255

KTableFilterExample 233
KTable.groupBy method 234
KTable instance 302
KTable.join method 252
KTable object 192
KTables 226, 259, 278

KTable API 233
stateful 232–233
versioned 245–246

KTable.suppress operation 288
KTable.toStream method 233

L

lastObservedStreamTime variable 318
last stable offset (LSO) 122

leaders and followers 37–41
replication 37–41

left-outer joins 213–215
ListenableFuture.get method 366
ListenableFuture#get method 360
ListenableFuture<SendResult<K, V>> object 360, 

366
List<T> type 428
ListTopicOptions.listInternal(true) method 124
ListTopicOptions object 124
ListTopicResult.names() method 125
ListTopicResult object 125
LoanApplicationController 382
LoanApplicationController.getCategoryRollup 

method 382
LoanApplicationProcessor 371
LoanApplicationTopology 371–372
loanProcessingTopology 370–371
log4j 62
LogAndSkipOnInvalidTimestamp class 294
LogAppendTime configuration 98
log.cleanup.policy=compact property 32
log file 33
logical position 23
log.retention.bytes configuration 30
long primitive 327
long scalar type 427
LSO (last stable offset) 122

M

main method 357
Map.compute method 270
Map instance 150
map method 255
map operator 265
mapValues() method 164
mapValues method 177, 182
mapValues operation 164–165
MaskField SMT 134
MaskField transform 143
Materialized.as method 223
Materialized object 192, 196, 219, 222, 224–225
Materialized.withCachingDisabled() function 193
Materialized.withCachingDisabled() method 225
max.poll.interval.ms configuration 448
max.tasks configuration 147
Merger.apply method 270
Merger code 270
Merger instance 269
Merger interface 270
Merger object 270
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key-value pair 21
sending first 25–29

consuming records from command line 27
creating topics 26
partitions in action 28–29
producing records on command line 26–27

message.timestamp.type configuration 98
metadata

cluster 36
leaders and followers 37–41

replication 37–41
min.insync.replicas configuration 94
mode 137
monitorThread 150
monitorThreadCheckInterval instance 

variable 151
monitorThread. variable 147
multiple events per topic 78–81
multiple event types 125–130

consuming 127–130
producing 126–127

MVC (Model–View–Controller) 133

N

name attribute 364
Named object 184
name element 54, 424
name property 424
needsRepartition flag 203
nested objects 436
network handler idle percentage 42
NewLoanApplicationProcessor 358
newRecord method 153
noDefaultBranch option 180
NONE compatibility mode 71
NONE format 328
num.standby.replicas configuration 217

O

ObjectMapper 57
objects 46–47
object type 435
offsets 23–24

committing 110–116
considerations 113–115
when offsets aren’t available 115–116

One (acks=1) setting 93
oneOf field 79
oneof field 126–128
oneOf keyword 438
oneof txn_type field 431
oneOf type 430
OOM (OutOfMemory) 290
operatingSchema method 153
operatingValue method 153
optimizations, using Kafka Streams 205–206
order property 424
org.apache.kafka.common.serialization.Deserial-

izer interface 85
org.apache.kafka.common.serialization.Serializer 

interface 85
originalStreamOne 200
ORM (object-relational mapping) 300
other join options 213
outer joins 213–214
OuterMessage.NestedMessage.Builder 434
out-of-order data 282–285

overview 282–285
OutOfOrderSequenceException 118

P

partition assignment strategies 107–108
PARTITION BY clause 337
Partitioner interface 97
PartitionGroup 311
partition method 97
partitions 21–25

determining correct number 25
in action 28–29

partitions entry 328
partitions property 328
patterns topic 173
PaymentProcessor class 354
peek method 278
peek operations 177, 196
peek processor 279
persistent queries 333–338
PlaneEvent class 127
plugin.path 136
poll() method 122
poll call 448
poll interval 101
poll method 148
PostConstruct 373
POST request 55
powers field 414, 416
PreDestroy annotation 373
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Predicate 316
Predicate interface 178
Predicate object 180
primitive types 424
print() method 177, 230–231
proactive repartitioning 201–203
process() method 177, 186, 304–305, 312, 314, 

317, 320
Processor API 299–300

creating topologies with sources, processors, 
and sinks 300–307

adding processor nodes 302–305
adding sink nodes 305–307
adding source nodes 301–302

data-driven aggregation 315–319
integrating with Kafka Streams API

319–320
stock analysis processor 307–315

process() method 312–314
punctuation semantics 310–312
punctuator execution 314–315
stock-performance processor 

application 308–310
ProcessorContext 185, 305, 309
ProcessorContext.schedule(Duration, 

Punctuation-Type, Punctuator) method
310

ProcessorContext.schedule(long time) 
method 312

Processor interface 305
Processor.process() method 305, 315
Processor.punctuate() method 292, 312
processors, creating topologies with 300–307

adding processor nodes 302–305
adding sink nodes 305–307
adding source nodes 301–302

ProcessorSupplier 303, 316
ProcessorSupplier interface 309
ProcessorSupplier.stores method 309
Produced configuration object 165, 264, 281
Produced instance 165
Produced object 173
Produced.with method 266
producer clients 447–449
produce requests 19–20
producer.initTransactions() method 120
producerPrefix method 449
ProducerRecord class 127
ProducerRecord object 91, 98
Producer.send method 283
ProductTransaction objects 91
programmatic topic management 124–125

PromotionProto object 207
properties attribute 435
properties element 54
Protobuf 48

serializers and deserializers 83
Protobuf block 59
PROTOBUF format 328
protobuf-gradle-plugin 57, 427
PROTOBUF key format 340
PROTOBUF_NOSR format 328
Protobuf (Protocol Buffers) 427–435

code generation 433–434
complex messages 429
importing 429–430
oneOf type 430–433
specific and dynamic types 434–435

protobufSerde method 175
Protobuf type 341–342
protoc block 60
protoc compiler 60
protoc executable 60
protoc tool 434
ProtoDeserializer 175
ProtoSerializer 175
pull queries 333–338
punctuate() method 311
punctuation semantics 310–312
PunctuationType.STREAM_TIME 310
PunctuationType.WALL_CLOCK_TIME 310, 

312
punctuator execution 314–315
Punctuator.punctuate method 310, 314–315
PurchasedItem object 171
purchase-patterns processor 171–173
purchases, filtering 178–179
push queries 333–338

Q

queries, push vs. pull vs. persistent
333–338

Query object 384
Query<R> interface 384
QueryResult object 385–386

R

RangeQuery 384
read_uncommitted setting 121
real_name field 414, 416
RecordContext object 185–186
Record.headers() method 186



INDEX472
RecordMetadata object 92
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RecordNameStrategy 78, 83, 424, 426, 

431
records

processing 457–462
producing with KafkaProducer 90–98

Kafka delivery semantics 94–95
partition assignment 95–96
producer configurations 93–94
specifying custom partitioner 98
timestamps 98
writing custom partitioner 96–97

record type 424
reduce method 192, 195, 239
reduce operation 190
Reducer implementation 239
Reducer interface 192
$ref attribute 437
references 74–78

and multiple events per topic 78–81
$ref key 437
register { } block 58
Repartitioned configuration object 203
repartition method 201
repartition operation 202–203, 242
repartitionRequired = true setting 200
repartitionRequired flag 200
replication 37–41

acknowledgments 40–41
request handler idle percentage 42
@RequestMapping annotation 380
requests, produce 19–20
RestClientException 387
RestControler 379
@RestController annotation 380
restoreConsumerPrefix method 449
RestTemplate 381
results, windowed 285–292

eager buffering 291–292
strict buffering 290–291

RetailPurchase class 174
RetailPurchase data model object 171
retailPurchaseKStream processor 171
RetailPurchase objects 170
rewards processor 173–174
rocksdb implementation 219
ROWOFFSET pseudo-column 335
ROWPARTITION pseudo-column

335
ROWTIME pseudo-column 335
ROWTIME system column 327

S

schema compatibility
forward compatibility 417–419
full compatibility 419–421

schema compatibility workshop 412–413
schema field 56
Schema Registry 45–87, 138, 175–176

compatibility 71–73
backward compatibility 71–72
forward compatibility 72
full compatibility 72–73
no compatibility 73

ksqlDB integration 341–345
objects 46–47
overview 47–65

architecture 50–51
end-to-end example 60–65
generating code from schemas 59–60
getting Schema Registry 50
plugins and serialization platform tools 57–58
registering schema 52–56
uploading schema file 58–59
what is Schema Registry 48–50

references 74–78
and multiple events per topic 78–81

serialization without 85–86
serializers and deserializers 81–85

JSON Schema 84–85
Protobuf 83

subject name strategies 65–71
TopicNameStrategy 66–67
TopicRecordNameStrategy 68–71

SchemaRegistryClient 59
schema-registry-plugin 57
__schemas topic 49–50
segments 29–34

compacted topics 31–32
data retention 30–31
topic partition directory contents 32–34

selectKey method 255
selectKey operation 200
SELECT statement 330
send method 92
Serdes

creating 167–168
encapsulating serializers and deserializers 

in 174–175
Serdes class 167
Serdes.serdeFrom factory method 175
Serdes.String() factory method 174
Serde<T> object 175
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SerdeUtil class 175
serialization, without Schema Registry 85–86
serialize method 46, 49, 61, 85
Serializer class 61
Serializer interface 85
serializers

and deserializers 81–85
JSON Schema 84–85
Protobuf 83

encapsulating in Serdes 174–175
Serializer.serialize method 46
Serializer<T> interface 175
SessionWindow 269, 271, 316
SessionWindow.ofInactivityGapWithNoGrace 

method 270
SessionWindows 277
session windows 268–271
setConcurrency method 364
shouldForward variable 318
shutDownLatch 151
simpleFirstStream instance 162
simpleTypes 435
SinkConnector 139
sink connectors, adding 143–145
sinks, creating topologies with 300–307

adding processor nodes 302–305
adding sink nodes 305–307
adding source nodes 301–302

SinkTask 139
SlidingWindows 277
sliding windows 271–275
SlidingWindows.ofTimeDifferenceWithNoGrace 

method 272
SMA (simple moving average) 312
SMTs (Single Message Transforms) 134

applying 141–143
SourceConnector 139
SourceConnector abstract class 146
SourceRecord constructor 150
sources, creating topologies with 300–307

adding processor nodes 302–305
adding source nodes 301–302

SourceTask 139
SourceTask abstract class 147
SPECIFIC_AVRO_READER_CONFIG 62–64
SpecificRecordBase class 63
SpecificRecord interface 127, 129
specific types 443–445
SpringApplicationBuilder class 357
SpringApplicationBuilder.run method 357
Spring Boot, building IQ app with 379–387
@SpringBootApplication annotation 357

Spring Kafka 353–373
building Kafka-enabled applications with 

Spring 355–367
application components 358–362
enhanced application requirements 362–367

Spring Kafka Streams 367–373
sr-backward module 415
sr-backward submodule 414, 416
src/main/avro directory 59, 414
src/main/json directory 59
src/main/proto directory 59
src/main/resources directory 356
src-topic topic 162
SRE (site reliability engineer) 315
standby tasks 217–218
state 188–225

stateful vs. stateless 189–190
stream-stream joins 206–215

co-partitioning 212
implementing 207–208
join internals 208–210
JoinWindows 211–212
left-outer joins 213–215
other join options 213
outer joins 213–214
StreamJoined 213
ValueJoiner 210–211

STATE_DIR_CONFIG configuration 219
stateful KTables 232–233
stateful operations, adding to Kafka Streams

190–206
aggregation vs. reducing 193–196
group-by details 192–193
naming 220–222
proactive repartitioning 201–203
repartitioning data 196–200
repartitioning to increase number of tasks 204
using Kafka Streams optimizations 205–206

StateListener 369
StateQueryRequest 384
StateQueryResult 385
StateQueryResult.getOnlyPartitionResult 385
StateStore 309
StateStore instance 223
state stores 215–225

assigning 218
changelog topics restoring 216–217
configuring changelog topics 224–225
location on filesystem 219–220
naming stateful operations 220–222
specifying store type 223–224
standby tasks 217–218
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static membership 108–110
stock analysis processor 307–315

process() method 312–314
punctuation semantics 310–312
punctuator execution 314–315
stock-performance processor application

308–310
StockPerformance 312–313
StockTickerSourceConnectorConfig class 146
StockTickerSourceConnectorMonitorThread 151
StockTickerSourceTask 147
StockTickerSourceTask.poll method 148
stopAggregation condition 318
StoreBuilder 224, 309
Stores class 223–224
Stores.lruMap method 223
stores method 309
StoreSupplier 224, 377
store types, specifying 223–224
StreamBuilder.build 372
StreamBuilder#build method 205
StreamBuilderFactoryBean 369
StreamBuilder#stream() method 458
StreamBuilder.stream method 170
streaming queries 325–332
StreamJoined 213
StreamJoined instance 208
StreamPartitioner 165, 212, 280–281
streams

creating 338–341
splitting/branching 179–183

StreamsBuilder 369–372
StreamsBuilder.build 370
StreamsBuilder#build method 205
StreamsBuilderFactoryBean 369–370
StreamsBuilderFactoryBeanCustomizer 369
StreamsBuilder.table method 232
StreamsConfig.APPLICATION_ID_CONFIG 

property 167
StreamsConfig.BOOTSTRAP_SERVERS_

CONFIG property 167
StreamsConfig.CACHE_MAX_BYTES_

BUFFERING_CONFIG 225
StreamsConfig class 167
StreamsConfig.mainConsumerPrefix method 449
StreamsConfig.NUM_STREAM_THREADS_

CONFIG 453
streams/logs/ directory 62
stream-stream joins 206–215

co-partitioning 212
implementing 207–208
join internals 208–210

JoinWindows 211–212
left-outer joins 213–215
other join options 213
outer joins 213–214
StreamJoined 213
ValueJoiner 210–211

StreamTask 311
StreamThread 311, 453–457
stream time 296–298
strict buffering 290–291
String scalar type 427
String Serde 170
StringSerializer class 93
Struct 150
subject name strategies 65–71

TopicNameStrategy 66–67
TopicRecordNameStrategy 68–71

Sub-topology listing 183
Suppressed class 288
suppress operator 288
symbols() method 152
system column 327

T

table joins 241–255
stream-global table join details 246–249
stream-table join details 243
table-table join details 250–254
versioned KTables 245–246

tables, creating 338–341
Task 449
Task interface 146
tasks, repartitioning to increase number of 204
tasks.max setting 139
test() method 178
testSchemasTask 415
Thread.run() method 151
threads

in Kafka Streams 453–457
monitoring 150–152

tiered storage 23, 34–36
timeindex file 33
timestamp.column.name 137–138
timestamp extraction, windowing and 257–260
TimestampExtractor 162, 212, 292, 294–296

custom 295–296
specifying 296
WallclockTimestampExtractor 295

TimestampExtractor interface 294–295
timestamp_format property 326
timestamp property 326
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timestamps 292–298
handling out-of-order data 282–285
stream time 296–298
TimestampExtractor 294–296
windowed results 285–292
windows, role of 260–282

TimeWindows class 263, 275
tombstone record 340
to method 177
to operator 192
topic management, using Admin API for 

programmatic 124–125
TopicNameExtractor#extract method 185
TopicNameExtractor interface 186
TopicNameStrategy 79, 432
topic.prefix 137
topicPrefix method 449
TopicRecordNameStrategy 78, 424, 426, 431
topics 21–25

compacted topics 31–32
creating 26
topic partition directory contents 32–34

topologies
creating with sources, processors, and 

sinks 300–307
adding processor nodes 302–305
adding sink nodes 305–307
adding source nodes 301–302

for Yelling app 161–166
Topology 372
Topology.addProcessor method 303
Topology.addSource() method 301
Topology.addStateStore 309
TopologyDescription object 183
Topology instance 302
topology nodes, naming 183–184
toStream() method 230, 278
transactional producer 118–121
Transformation interface 152
Transformation object 153
transformXXX methods 319
tree command 22
TruckEvent class 127
TumblingWindow 277
tumbling windows 266–268
txn_type field 444
type property 424

U

unbounded series 23
underreplicated partitions 42

union type 424–427, 430
use.latest.version=true property 439
UsePartitionTimeOnInvalidTimestamp class 294, 

302
user_activity stream 326, 338, 342
user_activity_table 342
user_activity topic 326, 339

V

@Value annotation 356
value.converter 136
value.converter.schemas.enable 138
value.converter.schemas.enable configuration 153
value_format property 328
value_format setting 328
Value inner class 153
ValueJoiner 210–211, 243, 248, 250
ValueJoiner.apply method 207, 210
ValueJoiner interface 207, 211
ValueJoinerWithKey interface 211
ValueMapper.apply method 164
ValueMapper interface 164
ValueMapper<V, V1> instance 170
ValueMapper<V,V1> interface 164
ValueMapperWithKey 170
ValueMapperWithKey<K, V, VR> interface 170
value.serializer configuration 93
versioned KTables 245–246
void 372

W

WallclockTimestampExtractor 295
WebApplicationType enum parameter 380
Widget object 189
WINDOW clause 337
windowedBy(..) operation 287
windowedBy method 263
Windowed class 264, 279
Windowed instance 277
Windowed key 265, 280
windowedKey 279
Windowed.key() method 265
windowed results 285–292

eager buffering 291–292
strict buffering 290–291

WindowedSerdes class 266
WindowedSerdes.sessionWindowedSerdeFrom

270
windowing and timestamps 257–260
WindowKeyQuery 384
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Window object 277, 279
WindowRangeQuery 384
windows, role of 260–282

hopping windows 262–266
retrieving window results for analysis 277–282
session windows 268–271
sliding windows 271–275
tumbling windows 266–268
window time alignment 275–277

Window.startTime() method 279
WITH clause 326

withName method 184, 208
WITH statement 326, 328
withStoreName method 208

Y

Yelling app, topology for 161–166

Z

Zero (acks=0) setting 93
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